Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 2)2 = 7/2 ⇔ x - 2 = ±√(7/2) ⇔ x = 2 ± √(7/2)
Vậy phương trình có hai nghiệm
x1 = 2 + √(7/2); x2 = 2 - √(7/2)
( x - 2 ) 2 = 7 / 2
⇔ x - 2 = ±√(7/2)
⇔ x = 2 ± √(7/2)
Vậy phương trình có hai nghiệm
x 1 = 2 + √ ( 7 / 2 ) ; x 2 = 2 - √ ( 7 / 2 )
a) Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x 1 = ( - b + √ Δ ) / 2 a ; x 2 = ( - b - √ Δ ) / 2 a
b) Nếu Δ = 0 thì từ phương trình (2) suy ra ( x + b / 2 a ) 2 = 0
Do đó,phương trình (1) có nghiệm kép x = (-b)/2a
1, Với x >= 0 ; x khác 1
\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
mình sửa đề câu 2 nhé
a, \(x^2+mx-1=0\)
\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)
Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)
Nếu Δ > 0 thì từ phương trình (2) suy ra x + b/2a = ± √Δ/2a
Do đó,phương trình (1) có hai nghiệm x1 = (-b + √Δ)/2a; x2 = (-b-√Δ)/2a
Chị quản lí ơi để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)!
Quá dễ . số cần tìm là 10 . Đúng đấy , bài này mk làm rồi , chắc chắn 100% luôn !!!
Ta có
\(\left(x-2\right)^2=\frac{7}{2}\Leftrightarrow x-2=\pm\sqrt{\frac{7}{2}}\)
\(\Leftrightarrow x=2\pm\frac{\sqrt{14}}{2}\)
Vậy phương trình có hai nghiệm là: \(x_1=2+\frac{\sqrt{14}}{2};x_2=2-\frac{\sqrt{14}}{2}\)