Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
1. Do y tỉ lệ thuận với x,ta có công thức: y = kx (k là một hằng số khác 0) (k là hệ số tỉ lệ). Thay vào,ta có: \(y=f\left(x\right)=kx=\frac{1}{2}x\)
a) Để \(f\left(x\right)=5\) hay \(y=5\) thì \(y=f\left(x\right)=\frac{1}{2}x=5\Leftrightarrow\frac{x}{2}=5\Leftrightarrow x=10\)
b) Giả sử \(x_1>x_2\Rightarrow\frac{x_1}{2}>\frac{x_2}{2}\) hay \(\frac{1}{2}.x_1>\frac{1}{2}.x_2\) hay \(f\left(x_1\right)>f\left(x_2\right)\) (đpcm)
2. Do y tỉ lệ với x,ta có công thức y = kx (k là hằng số khác 0,là hệ số tỉ lệ). Thay vào,ta có công thức: \(y=f\left(x\right)=kx=12x\)
a) Tương tự bài 1
b) Ta có: \(f\left(-x\right)=12.\left(-x\right)\)
\(-f\left(x\right)=-12.x\)
Mà \(12.\left(-x\right)=-12.x\) suy ra \(f\left(-x\right)=-f\left(x\right)\) (đpcm)
\(A=x^3-y^3-21xy\)
\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2\right)-21xy\)
\(A=7.\left(x^2+xy+y^2+3xy\right)\)
\(A=7.\left(x^2+2xy+y^2+2xy\right)\)
\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)
\(A=7.\left(7^2+2xy\right)\)
\(A=7^3+14xy\)
Ngáo rồi @@
\(\)
\(A=x^3-y^3-21xy\)
\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)
\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)
\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)
\(\Rightarrow A=7\left(x-y\right)^2\)
\(\Rightarrow A=7.7^2\)
\(\Rightarrow A=7.49\)
\(\Rightarrow A=343\)
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
bai 1 :Ta co |x-3,5| >hoac=0
va |y-1,3| >hoac=0 nen |x-3,5|+|y-1,3|=0 <=> x-3,5=0 va y-1,3=0
=>x=-3,5 va y=-1,3
bai 2: ta co
A=|x-500| +|x-300| =|x-500|+|300-x|
=>A > hoac =|x-500+300-x|=|-200|=200
dau = xay ra<=>(x-500).(300-x)=0 =>300< hoac=x< hoac =500
Bài 1 :
Ta có : \(\left|x-3,5\right|\ge0\) với mọi x
\(\left|y-1,3\right|\ge0\) với mọi x
\(\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\) với mọi x
Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3,5\\y=1,3\end{cases}}\)
Bài 2 :
Ta có : \(\left|x-500\right|\ge0\) với mọi x
\(\left|x-300\right|\ge0\) với mọi x
\(\Rightarrow\left|x-500\right|+\left|x-300\right|\ge0\) với mọi x
Câu này mk ko bít, làm tới đây đc thôi à
2.
a) \(3.\left(x-1\right)-2.\left|x+3\right|\)
TH1: \(x\ge-3.\)
\(3.\left(x-1\right)-2.\left|x+3\right|\)
\(=3x-3-2.\left(x+3\right)\)
\(=3x-3-\left(2x+6\right)\)
\(=3x-3-2x-6\)
\(=x-9.\)
TH2: \(x< -3.\)
\(3.\left(x-1\right)-2.\left|x+3\right|\)
\(=3.\left(x-1\right)-2.\left[-\left(x+3\right)\right]\)
\(=3x-3-2.\left(-x-3\right)\)
\(=3x-3-\left(-2x-6\right)\)
\(=3x-3+2x+6\)
\(=5x+3.\)
Chúc bạn học tốt!
Bạn ơi phần a là như này đúng không ạ :
TH1 : \(x+3\ge0\Leftrightarrow x\ge-3\)
Ta có \(\left(x-y\right)^2\ge0\)
=> \(x^2-2xy+y^2\ge0\)
=> \(x^2+y^2\ge2xy\)( đpcm)
Tớ nghĩ đề bài phải là tính A=(x+y)(x-y)
Ta có (x+y)(x-y)=x2-y2, ko có GTNN
Bạn kiểm tra lại đề nhé