\(\in\)N* ta luôn có:\(\frac{1}{n\left(n+1\right)}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

chứng tỏ :

Ta có : \(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

áp dụng :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(A=1-\frac{1}{9}\)

\(A=\frac{8}{9}\)

22 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.......-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(A=1-\frac{1}{9}=\frac{8}{9}\)

26 tháng 2 2018

a )  Ta có :   \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\) \(=\frac{1}{n.\left(n+1\right)}\)

b )   Áp dụng công thức trên tính tổng này như sau : 

             \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)

      \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

      \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

      \(=1-\frac{1}{10}\)

      \(=\frac{9}{10}\)

Chúc học giỏi !!!

26 tháng 2 2018

a, \(VP=\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}\)

\(=\frac{1}{n\left(n+1\right)}=VT\RightarrowĐPCM\)

27 tháng 2 2016

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)};\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

\(Vậy\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A=1-\frac{1}{8}=\frac{7}{8}\)

27 tháng 2 2016

1a,Là điều hiển nhiên khỏi cần giải

b,=1-1/10

2,1/2-1/8

9 tháng 6 2017

b) 

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

\(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)

\(B=\frac{1}{5}-\frac{1}{12}\)

\(B=\frac{7}{60}\)

9 tháng 6 2017

a) Ta có: 

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)  ;   \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{1\left(n+1\right)}\)

Vậy \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

b)  \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{100-99}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

\(B=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}-\frac{1}{11}-\frac{1}{12}\)

\(B=\frac{1}{5}-\frac{1}{12}\)

\(B=\frac{7}{60}\)

11 tháng 5 2018

a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)

=> \(A=\frac{9}{10}\)

b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)

=> \(A=1+\frac{7}{n-5}\)

Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)

=> n=(-2; 4, 6, 8)

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

12 tháng 7 2018

\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\)                  ;       \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)

\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

   \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)

  \(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)

    \(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

12 tháng 7 2018

a) Ta có hiệu của chúng là:

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)

Mặt khác, ta lại có tích của chúng là:

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\) 

Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)

Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)

b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)