K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

aaa =111*a =37*3*a chia hết cho 37       (1)

bbb =111*b=37*3*b chia hết cho 37        (2)

Từ (1) & (2) suy ra aaa+bbb chia hết cho 37

 

27 tháng 12 2015

gọi số tự nhiên có 3 chữ số giống nhau là aaa

Ta co : aaa=a.111=a.37.3 chia het cho 37 

=> moi tu nhien co 3 chu so giong nhau luon chia het cho 37 

****

15 tháng 3 2021

TREN MẠNG ĐỪNG CHỬI LUNG TUNG

TL :

aaa = a . 111

Ta có : 

111 = 3 . 37

=> aaa = a . 111 = a . 3 . 37

=> aaa luôn chi hết cho 37

Vậy số có dạng aaa luôn chia hết cho 37

15 tháng 11 2015

a)aaaaa=a*111111=a*15873*7(chia hết cho 7)

b)abcabc=abc*1001=abc*91*11(chia hết cho 11)

c)aaa=a*111=a*3*37(chia hết cho 37)

d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)

12 tháng 5 2017

Gọi số tự nhiên đầu là a

Ta có 10 số đó sẽ là:

a;A+1;A+2;A+3;a+4;...;a+10

vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên

Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10

21 tháng 10 2015

Gọi 3 stn liên tiếp là: a;a+1;a+2

Ta có : a+a+1+a+2=3a+(1+2)=3a+3

Mà 3a chia hết cho 3 ; 3 chia hết cho 3 

Nên 3a+3 chia hết cho 3

Vậy tổng 3 stn liên tiếp chia hết cho 3

21 tháng 10 2015

Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2 

ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3 

Vậy 3 số tự nhiên liên tiếp chia hết cho 3

1 tháng 12 2016

1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)

\(3^{40}=\left(3^2\right)^{20}=9^{20}\)

\(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)

2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)

Ta có:\(n+3⋮d,2n+5⋮d\)

\(\Rightarrow2n+6⋮d,2n+5⋮d\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)

1 tháng 12 2016

3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)

\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)

\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)

6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)

\(2A=2^2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(A=2^{101}-2\)

\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)

3 tháng 10 2019

Ta có

 \(A=n^2+n+2n+1\) 

\(A=n\left(n+1\right)+2n+1\) 

ta thấy\(n\left(n+1\right)\) và \(2n\)đề chia hết cho 2 nên \(A=n\left(n+1\right)+2n+1\)ko chia hết cho 2

Vậy \(A=n^2+3n+1\) ko chia hết cho 2