Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là lần thứ 2 bn ghi cái đề này? Nhg chưa có lần nào đúng cả!
Sửa đề: \(\left\{{}\begin{matrix}a^3-3a^2+5a-17=0\\b^3-3b^2+5b+11=0\end{matrix}\right.\) (*)
Từ HPT (*) <=> \(\left\{{}\begin{matrix}a^3-3a^2+3a-1+2a-16=0\\b^3-3b^2+3b-1+12=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}\left(a-1\right)^3+2\left(a-8\right)=0\left(1\right)\\\left(b-1\right)^3+2\left(b+6\right)=0\left(2\right)\end{matrix}\right.\)
Cộng (1) với (2) vế theo vế ta có:
\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)
<=> \(\left(a+b-2\right)\left[\left(a-1\right)^2+\left(b-1\right)^2-\left(a-1\right)\left(b-1\right)+2\right]=0\)
Mà \(\left(a-1\right)^2+\left(b-1\right)^2-\left(a-1\right)\left(b-1\right)+2>0\)
=> \(a+b-2=0\)
=> \(a+b=2\)
1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4
thi cấp tỉnh mà có bài là quá ngon rồi !
Áp dụng BĐT \((a+b+c)^2 \geq 3(ab+bc+ca)\) ta có:
\(\left(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\right)^2 \geq 3(x^2+y^2+z^2)=9\)
\(\Leftrightarrow \dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x} \geq 3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)
(AM-GM)
do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)
Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)