- \(x>y\Rightarrow x^2>xy\left(1\right)\)
- \(x>y\Rightarrow xy>y^2\left(2\right)\)
- Từ (1) và (2), ta có x^2>y^2
- \(x^2>y^2\Rightarrow x^3>xy^2\left(3\right)\)
- \(x>y\Rightarrow xy^2>y^3\left(4\right)\)
- Từ (3) và (4), ta được x^3>y^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X^3>Y^3 vì X>Y và hai số đều có số mũ bằng nhau nên x^>y^3
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)
Vì \(x>y\Rightarrow x-y>0\)
và \(x>y>0\)nên \(x^2+xy+y^2>0\)
Suy ra \(\left(x-y\right)\left(x^2+xy+y^2\right)>0\)(2)
Từ (1) và (2) suy ra \(x^3-y^3>0\)
\(\Rightarrow x^3>y^3\left(đpcm\right)\)
ta có:x>y>0 =>xy>y^2 ;x>y>0=>x^2>xy
do đó x^2>y^2;từ x^2>y^2 và x>0=>x^3<xy^2;x>y>0=>xy^2>y^3
vậy x^3>xy^2>y^3 hay x^3>y^3(đpcm)
tick nhé
Ta đặt:
\(\frac{x^3}{x^3}\)và \(\frac{y^3}{x^3}\)
Vì \(\frac{x^3}{x^3}=1\)\(\frac{y^3}{x^3}< 1\left(x>y\right)\)
=> \(x^3>y^3\)
- Xét nếu x < 0 thì y < 0 nhưng y < x => x.x.x > y.y.y => x3 > y3
- Xét nếu x > 0 thì y < 0 hoặc y > 0 nhưng y < x=> x.x.x > y.y.y => x3 > y3
x3 = x.x.x
y3 = y.y.y
Mà x > y > 0
=> x.x.x > y.y.y
=> x3 > y3 (đpcm)
Chắc thế
Từ x>y>0,ta có:
x>y =>xy>y2 (1)
x>y=>x2>xy (2)
Từ (1) và (2) ta suy ra:x2>y2
x2>y2=>x3>xy2 (3)
x2>y2=>xy2>y3 (4)
Từ (3) và (4)=>y3<x3(đpcm)