Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/90300865_513759882662331_7933478677944205312_n.jpg?_nc_cat=103&_nc_sid=b96e70&_nc_ohc=3FRJRAk93ccAX_g-K3Y&_nc_ht=scontent-hkt1-1.xx&oh=ecbc1515b5973f61bb5467b90f15ad1d&oe=5E9696F5
mình chụp ảnh r nhá . cậu tải zề zà quay lại chiều sao cho thấy nhá
nếu cần thì bảo mình ghi ra cho
Tự vẽ hình.
a) Xét \(\Delta\)BCE và \(\Delta\)BDE có:
BC = BD (gt)
\(\widehat{CBE}\) = \(\widehat{DBE}\) (suy từ gt)
BE chug
=> \(\Delta\)BCE = \(\Delta\)BDE (c.g.c)
b) Xét \(\Delta\)CBK và \(\Delta\)DBK có:
CB = DB (gt)
\(\widehat{CBK}\) = \(\widehat{DBK}\) (tia g)
BK chung
=> ........
=> CK = DK (2 cạnh t/ư)
c) Vì \(\Delta\)CBK = \(\Delta\)DBK (câu b)
=> \(\widehat{CKB}\) = \(\widehat{DKB}\) (2 góc t/ư)
mà \(\widehat{CKB}\) + \(\widehat{DKB}\) = 180o (kề bù)
=> \(\widehat{CKB}\) = \(\widehat{DKB}\) = \(\frac{180^o}{2}\) = 90o
Do đó BK \(\perp\) CD hay BE \(\perp\) CD
Ta có: \(\left[\begin{matrix}AH\perp CD\\BE\perp CD\end{matrix}\right.\) => AH // BE.
a) dễ
b) dễ
c) chỉ cần chứng minh BK _|_ DC dựa vào t/g BKD = t/g BKC
a: Xét ΔKBH và ΔABC có
BA=BK
góc KBH=góc ABC
BH=BC
Do đó: ΔKBH=ΔABC
b: Xét tứ giác ACKH co
B là trung điểm chung của AK và HC
nên ACKH là hình bình hành
=>AK//CH và AK=CH
c: Xét ΔBCE và ΔBHD có
góc BCE=góc BHD
BC=BH
góc CBE=góc HBD
Do đó: ΔBCE=ΔBHD
=>BE=BD
A B C I M D H K
a) Xét \(\Delta AIB\),\(\Delta AIC\) có: ^BAI=^CAI (gt) , AI chung, AB=AC
=>\(\Delta AIB\)=\(\Delta AIC\)(c.g.c)
b) Xét\(\Delta AMD\), \(\Delta CMB\) có: ^AMD=^BMC (2 goc đối điỉnh)
AM=MC(gt) ; BM=MD(gt)
=>\(\Delta AMD\)=\(\Delta CMB\)(c.g.c)
=> AD=BC ; BD=AC
Xét \(\Delta ABC\) => AB+BC>AC ( bđt trong tam giác)
mà AC=BD => AB+BC>BD
c) xét \(\Delta AHM\),\(\Delta CKM\) (^AHM=^CKM=90o) có: AM=MC(gt) , ^AMH=^CMK ( 2gocs dd)
=>\(\Delta AHM\)=\(\Delta CKM\)
=>AH=CK
=>AH+CK=2AH
Xét \(\Delta AHM\) vuông tại H:=> ^AMH< ^AHM
=> AM>AH
=>2AM>2AH
mà 2AM=AC(gt) 2AH= AH +CK
=>AC>AH+CK