K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

loading...

a: Xét ΔPIM và ΔPIN có

PM=PN

\(\widehat{MPI}=\widehat{NPI}\)

PI chung

Do đó: ΔPIM=ΔPIN

b: Xét ΔPEI vuông tại E và ΔPFI vuông tại F có

PI chung

\(\widehat{EPI}=\widehat{FPI}\)

Do đó: ΔPEI=ΔPFI

=>IE=IF

c: Xét ΔIEK vuông tại E và ΔIFH vuông tại F có

IE=IF

\(\widehat{EIK}=\widehat{FIH}\)(hai góc đối đỉnh)

Do đó: ΔIEK=ΔIFH

=>EK=FH

Ta có: PE+EK=PK

PF+FH=PH

mà PE=PF(ΔPEI=ΔPFI)

và EK=FH

nên PK=PH

=>ΔPHK cân tại P

d: Xét ΔPKH có \(\dfrac{PE}{PK}=\dfrac{PF}{PH}\)

nên EF//HK

16 tháng 12 2023

a) Do \(\Delta MNP\) cân tại P (gt)

\(\Rightarrow PM=PN\)

Do PI là tia phân giác của \(\widehat{MPN}\) (gt)

\(\Rightarrow\widehat{MPI}=\widehat{NPI}\)

Xét \(\Delta PIM\) và \(\Delta PIN\) có:

\(PM=PN\) (cmt)

\(\widehat{MPI}=\widehat{NPI}\) (cmt)

\(PI\) là cạnh chung

\(\Rightarrow\Delta PIM=\Delta PIN\left(c-g-c\right)\)

b) Do \(\widehat{MPI}=\widehat{NPI}\left(cmt\right)\)

\(\Rightarrow\widehat{EPI}=\widehat{FPI}\)

Xét hai tam giác vuông: \(\Delta EPI\) và \(\Delta FPI\) có:

PI là cạnh chung

\(\widehat{EPI}=\widehat{FPI}\) (cmt)

\(\Rightarrow\Delta EPI=\Delta FPI\) (cạnh huyền - góc nhọn)

\(\Rightarrow IE=IF\) (hai cạnh tương ứng)

c) Do \(\Delta EPI=\Delta FPI\) (cmt)

\(\Rightarrow PE=PF\) (hai cạnh tương ứng)

Xét hai tam giác vuông: \(\Delta IEK\) và \(\Delta IFH\) có:

\(IE=IF\left(cmt\right)\)

\(\widehat{EIK}=\widehat{FIH}\) (đối đỉnh)

\(\Rightarrow\Delta IEK=\Delta IFH\) (cạnh góc vuông - góc nhọn kề)

\(\Rightarrow EK=FH\) (hai cạnh tương ứng)

Mà \(PE=PF\left(cmt\right)\)

\(\Rightarrow EK+PE=FH+PF\)

\(\Rightarrow PK=PH\)

\(\Rightarrow\Delta PHK\) cân tại P

d) Do \(\Delta PHK\) cân tại P (cmt)

\(\Rightarrow\widehat{PKH}=\widehat{PHK}=\dfrac{180^0-\widehat{MPN}}{2}\)   (1)

Do PE = PF (cmt)

\(\Rightarrow\Delta PEF\) cân tại P

\(\Rightarrow\widehat{PEF}=\widehat{PFE}=\dfrac{180^0-\widehat{MPN}}{2}\)   (2)

Từ (1) và (2) \(\Rightarrow\widehat{PKH}=\widehat{PEF}\)

Mà \(\widehat{PKH}\) và \(\widehat{PEF}\) là hai góc đồng vị

\(\Rightarrow EF\) // \(HK\)

20 tháng 1 2018

PMNIEFKH

a) Xét \(\Delta PIM;\Delta PIN\) có :

\(PM=PN\) (tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của \(\widehat{MPN}\) )

\(PI:chung\)

=> \(\Delta PIM=\Delta PIN\left(c.g.c\right)\)

*Cách khác :

Xét \(\Delta PIM;\Delta PIN\) có :

\(\widehat{PMI}=\widehat{PNI}\) (tam giác MNP cân tại P)

\(PM=PN\)(tam giác MNP cân tại P)

\(\widehat{MPI}=\widehat{NPI}\) (PI là tia phân giác của góc MPN)

=> \(\Delta PIM=\Delta PIN\left(g.c.g\right)\)

b) Xét \(\Delta PEI;\Delta PFI\) có :

\(\widehat{PEI}=\widehat{PFI}\left(=90^{^O}\right)\)

\(PI:Chung\)

\(\widehat{EPI}=\widehat{FPI}\left(cmt\right)\)

=> \(\Delta PEI=\Delta PFI\) (cạnh huyền - góc nhọn)

=> \(IE=IF\) (2 cạnh tương ứng)

c) Ta chứng minh được \(\Delta PIK=\Delta PIH\left(g.c.g\right)\)

Suy ra : \(PK=PH\) (2 cạnh tương ứng)

Xét \(\Delta PHK\) có :

\(PK=PH\left(cmt\right)\)

=> \(\Delta PHK\) cân tại P (đpcm)

d) Xét \(\Delta PEF\) cân tại E có :

\(\widehat{PEF}=\widehat{PFE}=\dfrac{180^o-\widehat{P}}{2}\left(1\right)\)

Xét \(\Delta PKH\) cân tại P (cmt) có :

\(\widehat{PKH}=\widehat{PHK}=\dfrac{180^o-\widehat{P}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{PEF}=\widehat{PKH}\left(=\dfrac{180^o-\widehat{P}}{2}\right)\)

Mà thấy : 2 góc này đều ở vị trí đồng vị

=> \(\text{EF // HK (đpcm)}\)

Bạn xem lại đề nhé! Hình như có gì đó sai sai....

3 tháng 5 2019

a, xét tam giác INM và tam giác IEM có : IM chung

góc INM = góc IEM = 90 d0....

góc NMI = góc EMI do MI là phân giác của góc NMP (gt)

=> tam giác INM = tam giác IEM (ch - gn)

=> IN = IE và MN = ME (đn)

Sửa đề: IE vuông góc với PM, IF vuông góc với PN

a: Xét ΔPIM và ΔPIN có

PI chung

\(\widehat{MPI}=\widehat{NPI}\)

PM=PN

Do đó: ΔPIM=ΔPIN

b: Xét ΔPEI vuông tạiE và ΔPFI vuông tại F có

PI chung

\(\widehat{EPI}=\widehat{FPI}\)

Do đó: ΔPEI=ΔPFI

Suy ra: IE=IF

Trả lời:

P/s:  Xin lỗi nha!~Chỉ đc mỗi câu a!!!~

a) Theo giả thiết ta có : 

AH là đường trung tuyến ⇒BH=HC⇒BH=HC

xét ΔAHBΔAHB và ΔAHCΔAHC có:

AB=ACAB=AC (gt)

AHAH chung

BH=HCBH=HC ( cmt)

⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)

⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )

                                        ~Học tốt!~

2 tháng 6 2020

b , Ta có : HB +HC= Bc 

mà : HB=HC (GT)

=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2

Ta có : \(\Delta ABH\)vuông tại H

=> \(AB^2\)\(BH^2\)\(AH^2\)( Định lí Py-ta-go)

=> 62 = 22 +  AH2

=> AH2 = 62 - 22

=> AH2 = 32

=> AH \(\approx\) 5,7 cm