K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
H
7 tháng 3 2017
Bài 1 xét hai tam giác AHB và tam giác AHC có:
AC= AB (cân)
AH là cạnh chung
góc ABH= gó ACH
=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn
bài 2
a) ta có tam giác ABC cân
và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC
hoặc dùng kết quả 2 tam giác bằng nhau ở câu 1 để suy ra cũng dc
b)từ kết quả baì 1 suy ra hai góc bằng nhau
ta có tam giác ABH vuông tại H
HB=HC+1/2BC=5
sử dụng pytago
AH2 = AB2- BH2
Kẻ MK⊥AC tại K
a: Xét ΔABM có
AH là đườg cao
AH là đừog trung tuyến
Do đo; ΔABM cân tại A
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
=>MK=MC/2
Xét ΔMKC vuông tại K có \(\sin C=\dfrac{MK}{MC}=\dfrac{1}{2}\)
nên \(\widehat{C}=30^0\)
=>\(\widehat{KMC}=60^0\)
=>\(\widehat{BMK}=120^0\)
\(\widehat{KMA}=\dfrac{120^0}{2}=60^0\)
=>\(\widehat{KAM}=30^0=\widehat{C}\)
=>ΔMAC cân tại M
\(\widehat{BAC}=\widehat{BAM}+\widehat{KAM}=90^0\)
=>ΔABC vuông tại A
b: Xét ΔABM cân tại A có \(\widehat{AMB}=60^0\)
nên ΔABM đều