K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

a) xét tam giác AEF có

AH là đường cao của EF

AH là đường phân giác của góc A

\(H\in EF\)

=>tam giác AEF cân ở A

=>AH là đường cao đồng thời là đường trung tuyế của EF

=> H là trung điểm của EF

=>HE=HF=\(\frac{1}{2}EF\)(dpcm)

b)ta có \(\widehat{BME}=\widehat{CMF}\)(đối đỉnh )

mà \(\widehat{ACB}=\widehat{F}+\widehat{CMF}\)( t/c góc ngoài của tam giác )

ta có \(\widehat{F}=\widehat{AEF}\)(tam giác AEF cân ) mà\(\widehat{AEF}=\widehat{B}+\widehat{BME}\)

\(\Leftrightarrow\widehat{ACB}=\widehat{B}+\widehat{BME}+\widehat{CMF}\)

\(\Leftrightarrow\widehat{ACB}=\widehat{B}+2\widehat{BME}\)

=>\(\widehat{2BME}=\widehat{ACB}-\widehat{B}\)

c) tam giác AHE có 

góc AHE =90 độ => \(HE^2+AH^2+AE^2\left(pi-ta-go\right)\)

thay \(HE=\frac{1}{2}EF\)ta được

\(\left(\frac{1}{2}EF\right)^2+AH^2=AE^2\)

=>\(\frac{EF^2}{4}+AH^2=AE^2\left(dpcm\right)\)

d) kẻ BI//AC =>\(\widehat{BIE}=\widehat{AFH},\widehat{AFH}=90^0-\frac{1}{2}\widehat{A}\)\(\Leftrightarrow\widehat{BIE}=90^0-\frac{1}{2}\widehat{A}\)(1)

mà tam giác AHE zuông tại H

=>\(\widehat{AHE}=90^0-\frac{1}{2}\widehat{A}\left(2\right)\)

từ 1 zà 2 =>\(\widehat{BIE}=\widehat{AHE}=>\Delta BEI\)cân tại B

=> BE=BI(3)

xét tam giác MFC có \(BI//FC;B\in MC;I\in MF\)

=>\(\frac{BI}{FC}=\frac{MB}{MC}=1\)

=>\(BI=FC\left(4\right)\)

từ 3 zfa 4

=> BE=CF (dpcm

12 tháng 2 2020

mik chỉ làm đc ý a thôi nhé , bạn tự vẽ hình 

        Xét t/g AEH và t/g AHF có :

               góc EAH = góc FAH ( do AH là TPG )

                   AH chung

                 góc AHE = góc AHF ( gt)

     => t/g AEH = t/g AHF ( G.C.G )

     => HE = HF ( hai cạnh tương ứng )

12 tháng 2 2020

    câu b

     Ta có : 

        Vì  AEH là góc ngoài của t/g MEB

      =>  AEH=EMB + EBM

      => BME = AEH - EBM (1)

     Lại có :

           HAE + AHE + AEH = 180 độ ( ĐL)

    Mà AHE = 90 độ => HAE + AEH = 90 

                               =>HAE = 90 - AEH

    Mặt khác HAE = CAH = 1/2 FAB

                           => AEH = 90 - 1/2 FAB(2)

   Kết hợp (2) vào (1) => BME = 90 - FAB/2 - ABC

                                                = 180 - BAC - 2ABC/2

                                                = BCA - ABC/2

                                               =>2BME = BCA - ABC ( đpcm )

                             Chúc bạn học giỏi nha >8)