Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác AEF có
AH là đường cao của EF
AH là đường phân giác của góc A
\(H\in EF\)
=>tam giác AEF cân ở A
=>AH là đường cao đồng thời là đường trung tuyế của EF
=> H là trung điểm của EF
=>HE=HF=\(\frac{1}{2}EF\)(dpcm)
b)ta có \(\widehat{BME}=\widehat{CMF}\)(đối đỉnh )
mà \(\widehat{ACB}=\widehat{F}+\widehat{CMF}\)( t/c góc ngoài của tam giác )
ta có \(\widehat{F}=\widehat{AEF}\)(tam giác AEF cân ) mà\(\widehat{AEF}=\widehat{B}+\widehat{BME}\)
\(\Leftrightarrow\widehat{ACB}=\widehat{B}+\widehat{BME}+\widehat{CMF}\)
\(\Leftrightarrow\widehat{ACB}=\widehat{B}+2\widehat{BME}\)
=>\(\widehat{2BME}=\widehat{ACB}-\widehat{B}\)
c) tam giác AHE có
góc AHE =90 độ => \(HE^2+AH^2+AE^2\left(pi-ta-go\right)\)
thay \(HE=\frac{1}{2}EF\)ta được
\(\left(\frac{1}{2}EF\right)^2+AH^2=AE^2\)
=>\(\frac{EF^2}{4}+AH^2=AE^2\left(dpcm\right)\)
d) kẻ BI//AC =>\(\widehat{BIE}=\widehat{AFH},\widehat{AFH}=90^0-\frac{1}{2}\widehat{A}\)\(\Leftrightarrow\widehat{BIE}=90^0-\frac{1}{2}\widehat{A}\)(1)
mà tam giác AHE zuông tại H
=>\(\widehat{AHE}=90^0-\frac{1}{2}\widehat{A}\left(2\right)\)
từ 1 zà 2 =>\(\widehat{BIE}=\widehat{AHE}=>\Delta BEI\)cân tại B
=> BE=BI(3)
xét tam giác MFC có \(BI//FC;B\in MC;I\in MF\)
=>\(\frac{BI}{FC}=\frac{MB}{MC}=1\)
=>\(BI=FC\left(4\right)\)
từ 3 zfa 4
=> BE=CF (dpcm
mik chỉ làm đc ý a thôi nhé , bạn tự vẽ hình
Xét t/g AEH và t/g AHF có :
góc EAH = góc FAH ( do AH là TPG )
AH chung
góc AHE = góc AHF ( gt)
=> t/g AEH = t/g AHF ( G.C.G )
=> HE = HF ( hai cạnh tương ứng )
câu b
Ta có :
Vì AEH là góc ngoài của t/g MEB
=> AEH=EMB + EBM
=> BME = AEH - EBM (1)
Lại có :
HAE + AHE + AEH = 180 độ ( ĐL)
Mà AHE = 90 độ => HAE + AEH = 90
=>HAE = 90 - AEH
Mặt khác HAE = CAH = 1/2 FAB
=> AEH = 90 - 1/2 FAB(2)
Kết hợp (2) vào (1) => BME = 90 - FAB/2 - ABC
= 180 - BAC - 2ABC/2
= BCA - ABC/2
=>2BME = BCA - ABC ( đpcm )
Chúc bạn học giỏi nha >8)