Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)
Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)
=> x = 1/2
Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)
=> y = 5/6
Lại có x + y + z = 1/2
=> 1/2 + 5/6 + z = 1/2
=> 5/6 + z = 0
=> z = -5/6
Khi đó A = 2016X + y2017 + z2017
= 2016.1/2 + (5/6)2017 - (5/6)2017
= 1008
Vậy A = 1008
Đặt 5x=4y=2z=k suy ra \(x=\frac{k}{5};y=\frac{k}{4};z=\frac{k}{2}\)
Ta có :
x-y+z=-18
\(\frac{k}{5}-\frac{k}{4}+\frac{k}{2}=-18\)
\(k.\left(\frac{1}{5}-\frac{1}{4}+\frac{1}{2}\right)=-18\)
\(k.\frac{9}{20}=-18\)
k = -40 suy ra x = -8 ; y = -10 ; z = -20
Ta có:
\(A=\left(\frac{2}{x}+\frac{5}{y}+\frac{5}{z}\right)^{2016}=\left(\frac{2}{-8}+\frac{5}{-40}+\frac{5}{-20}\right)^{2016}=\left(\frac{5}{-8}\right)^{2016}=0\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)
=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)
^_^
Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)
\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:
\(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)
\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)
\(=4k^2-4k^2=0\)
Bài giải
Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y-1\right|\ge0\\\left(x+y-z-2\right)^{2016}\ge0\end{cases}}\) mà \(\left|x-2\right|+\left|y-1\right|+\left(x+y-z-2\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-2\right|=0\\\left|y-1\right|=0\\\left(x+y-z-2\right)^{2016}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=0\\y-1=0\\x+y-z-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\\x+y-z=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\\2+1-z=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=1\\z=1\end{cases}}\)
\(\Rightarrow\text{ }x=2\text{ ; }y=z=1\)
Vì \(|x-2|\ge0,\forall x\)
\(|y-1|\ge0,\forall y\)
\(\left(x+y-z-2\right)^{2016}\ge0,\forall x,y,z\)
suy ra \(|x-2|+\)\(|y-1|+\)\(\left(x+y-z-2\right)^{2016}\ge0,\forall x,y,z\) (1)
mà \(|x-2|+\)\(|y-1|+\)\(\left(x+y-z-2\right)^{2016}=0\) (2)
Từ (1) và (2) suy ra \(|x-2|=0\)và \(|y-1|=0\)và \(\left(x+y-z-2\right)^{2016}=0\)
suy ra x=2 và y = 1 và z = 1
Vậy A = 5. 4 . 1. 2016. 1. 2017=81325440