K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:

\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)

=4m^2-4m+1+8m+44

=4m^2+4m+45

=(2m+1)^2+44>=44>0

=>Phương trình luôn có hai nghiệm pb

|x1-x2|<=4

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)

=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)

=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)

=>0<=4m^2+4m+45<=16

=>4m^2+4m+29<=0

=>(2m+1)^2+28<=0(vô lý)

2 tháng 5 2016

kh biết

a: Thay m=1 vào pt, ta được:

\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16\)

\(=\left(m-4\right)^2\)

Để phươg trình có hai nghiệm phân biệt thì m-4<>0

hay m<>4

Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(-m\right)^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

20 tháng 4 2020

lo hbfbekef evef

frgrgthtgr

t

gr

grgrgrgfrgrf

r

g

rg

r

g

r

gr

f

r

r

br

g

r

gr

gr

grg

r

g

eh

h

h

t

tt

t

t

thr

htr

htht

rh

ththt

ht

ht

h

h

ht

ht

ht

h

frorgew

rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f

v

r

re

eb

tg

bet

eb

1 tháng 6 2020

\(\sqrt[]{}\)

18 tháng 3 2016

m khác 0
tính \(\Delta\)
tìm đk m để\(\Delta\) lớn hơn 0
phân tích \(\left(x_1+x_2\right)^2-2x_1x_2-2\)

6 tháng 9 2020

a)

XÉT    \(\Delta=4\left(m+1\right)^2-8m=4m^2+8m+4-8m=4m^2+4\ge0+4=4>0\)

=>   \(\Delta>0\)     

=>    PT CÓ 2 NGHIỆM PHÂN BIỆT VỚI MỌI GIÁ TRỊ m.

b)

\(\Rightarrow\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)\left(1\right)\\x_1.x_2=2m\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4\left(m+1\right)^2\)

<=>   \(x_1^2+x_2^2+4m=4m^2+8m+4\)

<=>   \(x_1^2+x_2^2=4m^2+4m+4=4m^2+4m+1+3=\left(2m+1\right)^2+3\ge3\forall m\)

=>    \(x_1^2+x_2^2\ge3\)

DẤU "=" XẢY RA <=>   \(\left(2m+1\right)^2=0\Leftrightarrow m=-\frac{1}{2}\)

6 tháng 9 2020

a) \(\Delta^'=\left(m+1\right)^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)

Vậy phương trình có 2 nghiệm phân biệt \(x_1;x_2\forall m\)

b) Theo định lý Vi-et: \(\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)=-2m-2\\x_1x_2=2m\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(-2m-2\right)^2-2.2m\)

                     \(=4m^2+8m+4-4m\)

                     \(=4m^2+4m+4=\left(2m+1\right)^2+3\ge3\)

Dấu "=" xảy ra khi \(m=\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=-1\end{cases}}\)

Đến đây thì bạn tìm ra \(x_1;x_2\)là nghiệm của \(x^2+x-1=0\)và kết luận GTNN.