\(\frac{n+19}{n+6}\)

Tìm n \(\in\)N ( h...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

\(\frac{n+19}{n+6}=\frac{n+6+13}{n+6}=\frac{n+6}{n+6}+\frac{13}{n+6}=1+\frac{13}{n+6}\)

Để x là phân số tối giản <=> n + 6 thuộc Ư(13) = {1;13}

n + 6113
n-59

Vì n thuộc N nên n = 9

Vậy n = 9 thì x là phân số tối giản

29 tháng 1 2017

n = 9 nhA BN

4 tháng 2 2022

hahaa

8 tháng 7 2019

Để \(\frac{n+9}{n-6}\inℕ\)

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có : Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ_{\left(15\right)}\)

\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)

Lập bảng xét các trường hợp : 

\(n-6\)\(1\)\(3\)\(5\)\(15\)
\(n\)\(7\)\(9\)\(11\)\(21\)

Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)

Để \(\frac{n+9}{n-6}\)là số nguyên 

\(\Rightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Ta có :\(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)

n-6-11-335-5-1515
n5739111-921
12 tháng 7 2015

Gọi ƯCLN(n+19; n+6) là d. Ta có:

n+19 chia hết cho d

n+6 chia hết cho d

=> n+19-(n+6) chia hết cho d

=> 13 chia hết cho d

Giả sử phân số rút gọn được

=> n+6 chia hết cho 13

=> n = 13k - 6

Để phân số trên là phân số tối giản => n\(\ne\)13k - 6

12 tháng 7 2015

Gọi ƯCLN(n+19; n+6) là d. Ta có:

n+19 chia hết cho d

n+6 chia hết cho d

=> n+19-(n+6) chia hết cho d

=> 13 chia hết cho d

Giả sử phan số rút gọn được

=> n+6 chia hết cho 13

=> n = 13k - 6

=> Để phân số tối giản thì n$\ne$≠13k - 6

22 tháng 2 2018

b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)

c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)

\(=\frac{393939-10101}{1212120}\)

\(=\frac{383838}{1212120}\)

\(=\frac{19}{60}\)

26 tháng 4 2020

ai biêt

23 tháng 1 2018

 5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *

Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)

=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản

Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)

=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

29 tháng 2 2020

1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó 

Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố

\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)

\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)

\(\Rightarrow n=0\)( chọn )

29 tháng 2 2020

2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :

24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .

Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .

Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9  

Suy ra b = 3 .

Thử lại : 795 + 834 = 1629 chia hết cho 9 .