Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F O
a, xét tam giác ODC có : AB // DC
=> OA/OC = OB/OD = AB/DC (đl)
có : AB = 4; DC = 9 (gt)
=> OA/OC = OB/OD = 4/9
B, xét tam giác ABD có : EO // AB (gt) => EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả) (2)
xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA (hệ quả) (3)
(1)(2)(3) => OE/AB = OF/AB
=> OE = OF
xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD (hệ quả) (4)
xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD
=> EO(1/AB + 1/DC) = 1 (*)
xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = 1 (**)
(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1
=> (OE + OF)(1/AB + 1/DC) = 2
=> EF(1/AB + 1/DC) = 2
=> 1/AB + 1/DC = 2/EF
A B C a O E F D
a, xét tam giác ABD có : EO // AB (Gt)
=> EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có : OF // AB (gt)
=> OF/AB = OC/CA (hệ quả) (2)
xét tam giác ODC có : AB // DC (gt)
=> DO/DB = OC/CA (hệ quả) (3)
(1)(2)(3) => OE = OF
b, xét tam giác ABD có EO // AB (gt)
=> EO/AB = DE/AD (hệ quả) (4)
xét tam giác ACD có : EO // DC
=> EO/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD
=> EO(1/AB + 1/BC) = AD/AD = 1 (*)
xét tam giác ACB có : FO // AB
=> OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có : OF // DC
=> OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = BC/BC = 1 (**)
(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2
=> (OF + OE)(1/AB + 1/DC) = 2
có OF + OE = EF
=> 1/AB + 1/DC = 2/EF
Sửa đề: a cắt AD,BC lần lượt tại E và F
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)
Xét ΔBDC có OF//DC
nên \(\dfrac{OF}{DC}=\dfrac{BF}{BC}\left(2\right)\)
Xét hình thang ABCD có EF//AB//CD
nên \(\dfrac{AE}{ED}=\dfrac{BF}{FC}\)
=>\(\dfrac{ED}{AE}=\dfrac{CF}{BF}\)
=>\(\dfrac{ED+AE}{AE}=\dfrac{CF+BF}{BF}\)
=>\(\dfrac{AD}{AE}=\dfrac{BC}{BF}\)
=>\(\dfrac{AE}{AD}=\dfrac{BF}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra OE=OF
câu a,b dễ quá
c/Có: \(\frac{2}{EF}=\frac{2}{2OE}=\frac{1}{OE}\)
Ta có: \(\frac{OE}{AB}=\frac{DE}{AD}\left(1\right),\frac{OE}{CD}=\frac{AE}{AD}\left(2\right)\).Cộng (1) và (2) đc
\(OE\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DE+AE}{AD}\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OE}\)
Suy ra ĐPCM
Dùng Thales duy suy ra chặp là ra th, bạn gõ lên mạng là câu a,b trên google họ giải..nhát ghi qá
Để chứng minh OE = OF, ta sẽ sử dụng tính chất của các tam giác đồng dạng.
Vì a//AB và CD, ta có:
∠OAB = ∠OCD (cùng là góc đối)
∠OBA = ∠ODC (cùng là góc đối)
Do đó, tam giác OAB và OCD là hai tam giác đồng dạng (theo góc-góc).
Theo tính chất của các tam giác đồng dạng, tỉ lệ giữa các cạnh tương ứng của hai tam giác đồng dạng là bằng nhau.
Vì vậy, ta có:
OA/OO = OB/OC
OD/OO = OC/OB
Từ đó, ta suy ra:
OA/OO = OD/OO
OA = OD
Vậy, ta có OA = OD.
Do đó, ta có tam giác OAE và ODF là hai tam giác cân (vì OA = OD).
Vì vậy, ta có OE = OF.
Vậy, ta đã chứng minh được OE = OF.