\(y=\dfrac{2}{3}x\) và \(y=x^2-x+\dfrac{2}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

PTHĐGĐ của hai hs: 

\(\dfrac{2}{3}x=x^2-x+\dfrac{2}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)

Thay x vào hàm số đầu tiên: \(\left[{}\begin{matrix}y=\dfrac{2}{3}\cdot1=\dfrac{2}{3}\\y=\dfrac{2}{3}\cdot\dfrac{2}{3}=\dfrac{4}{9}\end{matrix}\right.\)

Vậy hai hs cắt nhau tại: \(\left[{}\begin{matrix}A\left(1;\dfrac{2}{3}\right)\\A\left(\dfrac{2}{3};\dfrac{4}{9}\right)\end{matrix}\right.\)

4 tháng 4 2017

Bài giải:

Vẽ đồ thị: y = x2

x

-6

-3

0

3

6

y = x2

12

3

0

3

12

y = -x + 6

- Cho x = 0 => y = 6.

- Cho y = 0 => x = 6.

Vẽ đồ thị: xem hình bên dưới.

b) Giá trị gần đúng của tọa độ câc giao điểm (thực ra đây là giá trị đúng).

Hai đồ thị cắt nhau tại hai điểm A và B.

Theo đồ thị ta có A(3; 3) và B(-6; 12).



a: 

b: Phương trình hoành độ giao điểm là:

\(2x-3+x^2=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

Khi x=-3 thì y=-9

Khi x=1 thì y=-1

c: Khi x=1 và y=-1 thì \(2\cdot1-3=-1=y\)

Khi x=-3 và y=-9 thì \(2\cdot\left(-3\right)-3=-9=y\)

Khi x=1 và y=-1 thì \(-x^2=-1=y\left(nhận\right)\)

Khi x=-3 và y=-9 thì \(-x^2=-9=y\left(nhận\right)\)

23 tháng 4 2017

a) Đồ thị được vẽ như hình bên.

b) Vì M thuộc đồ thị y = y = x + 2 và tung độ của nó là y = 1 nên x + 2= 1.

Suy ra x = -1,5.

Vậy M(-1,5; 1).

Vì N thuộc đồ thị y = - x + 2 và tung độ của N là y = 1 nên - x + 2 = 1.

Suy ra x = .

Vậy N(; 1).

23 tháng 4 2017

Bài giải:

a) Đồ thị được vẽ như hình bên.

b) Vì M thuộc đồ thị y = y = x + 2 và tung độ của nó là y = 1 nên x + 2= 1.

Suy ra x = -1,5.

Vậy M(-1,5; 1).

Vì N thuộc đồ thị y = - x + 2 và tung độ của N là y = 1 nên - x + 2 = 1.

Suy ra x = .

Vậy N(; 1)


9 tháng 4 2017

- Bảng giá trị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

11 tháng 5 2018

Xét hai hàm số trên, ta được phương trình hoành độ giao điểm là

\(\frac{1}{2}\)x= x- \(\frac{1}{2}\)  <=> x2 = 2x -1 <=> x2 -2x +1 = 0 <=> ( x - 1)2 = 0 <=> x = 1 => y = \(\frac{1}{2}\) 

Vậy ta được tọa độ giao điểm của hai hàm số trên là (1;\(\frac{1}{2}\))

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}0,2x^2-x=0\\y=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(0,2x-1\right)=0\\y=x\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(5;5\right)\right\}\)