Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay tọa độ P và Q vào pt \(\Delta\) ta được 2 giá trị cùng dấu \(\Rightarrow\) P, Q nằm cùng phía so với \(\Delta\)
Gọi N là 1 điểm thuộc delta, áp dụng BĐT tam giác: \(\left|NP-NQ\right|\le PQ\)
Đẳng thức xảy ra khi và chỉ khi N, P, Q thẳng hàng hay N là giao điểm của PQ và delta
\(\overrightarrow{PQ}=\left(-4;-10\right)=-2\left(2;5\right)\Rightarrow\) đường thẳng PQ nhận (5;-2) là 1 vtpt
Phương trình PQ:
\(5\left(x-1\right)-2\left(y-6\right)=0\Leftrightarrow5x-2y+7=0\)
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}5x-2y+7=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow N\left(-9;-19\right)\)
\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)
(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)
d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)
Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến
Suy ra \(\left(Q\right):x-2z+12=0\)
a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)
vậy C (-2y -1 ; y ).
tam giác ABC cân tại C khi và chỉ khi
CA = CB \(\Leftrightarrow\) CA2 = CB2
\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2
\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2
giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)
vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)
b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :
\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2
\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17
\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)
vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)
Gọi hoành độ M là a, do M thuộc \(\Delta\Rightarrow y_M=4-2a\Rightarrow M\left(a;4-2a\right)\)
\(\Rightarrow\overrightarrow{OM}=\left(a;4-2a\right)\) ; \(\overrightarrow{OA}=\left(1;-2\right)\)
\(\Rightarrow2\overrightarrow{OM}-\overrightarrow{OA}=2\left(a;4-2a\right)-\left(1;-2\right)=\left(2a-1;10-4a\right)\)
\(\Rightarrow\left|2\overrightarrow{OM}-\overrightarrow{OA}\right|=A=\sqrt{\left(2a-1\right)^2+\left(10-4a\right)^2}\)
\(\Rightarrow A=\sqrt{20a^2-84a+101}=\sqrt{20\left(a-\dfrac{21}{10}\right)^2+\dfrac{384}{5}}\ge\sqrt{\dfrac{384}{5}}\)
\(\Rightarrow A_{min}=\sqrt{\dfrac{384}{5}}\) khi \(a=\dfrac{21}{10}\)
\(\Rightarrow M\left(\dfrac{21}{10};\dfrac{-1}{5}\right)\)
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
Thay tọa độ P và Q vào phương trình d ta thấy ra hai kết quả cùng dấu, vậy P và Q nằm cùng phía so với d
Áp dụng BĐT tam giác cho tam giác NPQ, ta có
\(\left|NP-NQ\right|\le PQ\Rightarrow\left|NP-NQ\right|_{max}=PQ\)
Dấu "=" xảy ra khi và chỉ khi N, P, Q thẳng hàng hay N là giao điểm của đường thẳng PQ và d
\(\overrightarrow{PQ}=\left(4;10\right)=2\left(2;5\right)\Rightarrow\) đường thẳng PQ nhận \(\overrightarrow{n}=\left(5;-2\right)\) là 1 vtpt
Phương trình PQ:
\(5\left(x-1\right)-2\left(y-6\right)=0\Leftrightarrow5x-2y+7=0\)
Tọa độ N là nghiệm của hệ:
\(\left\{{}\begin{matrix}5x-2y+7=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow N\left(-9;-19\right)\)