Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
Tra loi
Bn len google tra cho nhanh
Mk ns tht day
Hok tot Hien
Lời giải:
a) Vi:
\(2^2+(3-m).2+2(m-5)=0, \forall m\) nên PT luôn có nghiệm $x=2$ với mọi $m$
b)
Vì đây là PT bậc 2 nên chỉ có tối đa 2 nghiệm. PT đã luôn có nghiệm $x_1=2$ nên $x=5-2\sqrt{2}$ chính là nghiệm $x_2$ còn lại
Theo định lý Vi-et:
\(\left\{\begin{matrix} x_1+x_2=m-3=7-2\sqrt{2}\\ x_1x_2=2(m-5)=10-4\sqrt{2}\end{matrix}\right.\Rightarrow m=10-2\sqrt{2}\)
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
\(\Delta=\left(m+4\right)^2-16m=\left(m-4\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+4\\x_1x_2=4m\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-\left(m+4\right)x_1+4m=0\Leftrightarrow x_1^2=\left(m+4\right)x_1-4m\)
Thay vào bài toán:
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)
\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)
\(\Leftrightarrow m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)