\(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

Bài này xoay quanh hằng đẳng thức sau:    \(x^2+xa+xb+ab=\left(x+a\right)\left(x+b\right)\).

Thực vậy, theo giả thiết \(-d=a+b+c\)  nên ta có \(ab-cd=ab+c\left(a+b+c\right)=\left(c+a\right)\left(c+b\right).\)

Tương tự, \(bc-ad=bc+a\left(a+b+c\right)=\left(a+b\right)\left(a+c\right),\)

\(ca-bd=ca+b\left(a+b+c\right)=\left(b+a\right)\left(b+c\right).\)

Do đó \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(c+a\right)\left(c+b\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)  là một số hữu tỉ.

20 tháng 8 2015

a + b + c + d = 0 

=> a = - b - c - d ; b = - a - c - d; c = - a - b - d

+) a = - b- c - d =>  ab = -b2 - bc - bd => ab - cd = - b2 - bc - bd - cd = -b(b + c) - d(b + c) = -(b +d)(b +c)

+) b = - a - c - d => bc = -ac - c2 - cd => bc - ad = -ac - c2 - cd - ad = -c(a + c) - d(a+c) = - (c +d)(a+c)

+) c = -a - b - d => ca = -a2 - ab - ad => ca - bd = -a2 - ab - ad - bd = - (a+b).(a+ d)

=> (ab - cd).(bc - ad).(ca - bd) = - (b +d).(b +c).(c+d)(a+c)(a+b)(a+d) 

Vì a+ b + c + d = 0 => a + d = - (b + c) và b + d = - (a +c); c+d = - (a + b)

=> (ab - cd).(bc - ad).(ca - bd) = (a+ b)2. (b +c)2. (c +a)2

=> \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(a+b\right)^2.\left(b+c\right)^2\left(c+a\right)^2}=\left|a+b\right|.\left|b+c\right|\left|c+a\right|\)

là số hữu tỉ với a; b; c;d là số hữu tỉ

2 tháng 1 2016

Tick cho mình tròn 40 với

15 tháng 6 2017

Thấy \(a+b+c+d=0\Rightarrow\left\{{}\begin{matrix}a=-b-c-d\\b=-a-c-d\\c=-a-b-d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ab-cd=-b^2-bc-bd-cd=\text{-(b + c) (b + d)=(a+d)(b+d)}\\bc-ad=-ca-c^2-cd-ad=\text{-(a + c) (c + d)=(b+d)(c+d)}\\ca-bd=-a^2-ab-ad-bd=\text{-(a + b) (a + d)}=\left(c+d\right)\left(a+d\right)\end{matrix}\right.\)\(\Rightarrow\)x=(a+d)(b+d)(c+d)

29 tháng 10 2017

ta có: \(a+b+c+d=0\)

\(\Leftrightarrow a\left(a+b+c+d\right)=0\)

\(\Leftrightarrow a^2+ab+ac+ad=0\)

\(\Leftrightarrow ad=-\left(a^2+ab+ac\right)\)

\(\Leftrightarrow ad-bc=-\left(a^2+ab+ac+bc\right)\)

\(\Leftrightarrow ad-bc=-\left(a+c\right)\left(a+b\right)\)

c/m tương tự ta đc: \(ab-cd=-\left(a+c\right)\left(a+d\right)\)

                                \(ac-bd=-\left(a+b\right)\left(a+d\right)\)

\(\Rightarrow\left(ad-bc\right)\left(ab-cd\right)\left(ac-bd\right)=-\left(a+c\right)^2\left(a+b\right)^2\left(a+d\right)^2\)

                                                                            \(=\left[-\left(a+b\right)\left(a+c\right)\left(a+d\right)\right]^2\)

mà a;b;c;d là các số hữu tỉ nên:

\(-\left(a+b\right)\left(a+c\right)\left(a+d\right)\)là số hữu tỉ 

=> \(\left(ad-bc\right)\left(ab-cd\right)\left(ac-bd\right)\) là bình phương của 1 số hữu tỉ =>đpcm

11 tháng 8 2016

Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)

a.

\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)

\(\Rightarrow-5\le2x+3y\le5\)

b.

\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)

\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)

Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)

Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.

c.

bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

d.

bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)

\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:

\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)

20 tháng 9 2017

Fairy Tail bn tham khảo nè:

x, y , z hữu tỉ 
√x + √y + √z hữu tỉ 
- Nếu trong ba số √x , √y , √z có 1 số hữu tỉ , giả sử √x => √y + √z hữu tỉ 
Đặt y = a/b; z = c/d đều hữu tỉ với a,b, c, d thuộc N * 
√y + √z hữu tỉ => (√y + √z)² hữu tỉ => √(zy) hữu tỉ => √(ac/bd) hữu tỉ => ac/bd = (p/q)² => √(a/b) = p/q√(d/c) với p, q Є N* 
=> √y + √z = √(a/b) + √(c/d) = p/q√(d/c) + √(c/d) = (pd + qc)/√(cd) hữu tỉ => √(cd) hữu tỉ => d√(c/d) = √(cd) hữu tỉ => √z = √(c/d) hữu tỉ => √y cung hữu tỉ 
Vậy √x , √y , √z đều là số hữu tỉ 
- Nếu cả √x , √y , √z đều là số vô tỉ 
Đặt √x + √y + √z = p/q với p, q thuộc N* => x + y + 2√(xy) = (p/q)² - 2p/q √z + z => 
=> √(xy) + p/q√z hữu tỉ 
Do xy hửu tỉ và (p/q)^2 z hữu tỉ nên có thể đặt xy = a/b và (p/q)^2 z = c/d 
thì ta có √(a/b) + √(c/d) hữu tỉ. đến đây lí luận như trường hợp trên thì suy ra √(xy) và p/q√z hữu tỉ => √z hữu tỉ => mâu thuẫn với giả thiết √z vô tỉ 
Vậy √x , √y , √z đều là số hữu tỉ 
````````````````````````````` 
Với bài 3 em có thể rút ngắn hơn bằng cách giả sử một trong ba số √x , √y , √z là số vô tỉ , ví dụ là √z, sau đó dùng cách lý luận ở trường hợp 2 suy ra √(xy) + p/q√z hữu tỉ, sau đó lại áp dụng lý luận như của trường hợp 1 để suy ra √z vô tỉ => trái giả thiết, tức là ko có số nào trong chứng là số vô tỉ cả. Đến đây bài toán đã dc chưng minh xong 
```````````````````````````````````````... 
Bài 4/ Đề của em ko đúng, phải thay dấu - bằng dấu + . Khi đó ta làm thế này 
(b^2+c^2-a^2)/2bc+(a^2+c^2-b^2)/2ca +(a^2+b^2-c^2)/2ab=1 
<=> (b^2+c^2-a^2)/2bc - 1 +(a^2+c^2-b^2)/2ca - 1 + (a^2+b^2-c^2)/2ab + 1 = 0 
<=> a[ (b-c)² - a²] + b[ ( a-c)² -b²] + c[ (a+b)² - c²] = 0 
<=> a( a+b-c)(b-a-c) + b( a+b-c)(a-b-c) + c(a+b-c)(a+b+c) = 0 
<=> (a+b-c) [ c(a+b+c) -a(a+c-b) - b(b+c-a)] = 0 
<=> (a+b-c)[ c² -(a-b)²] = 0 
<=> (a+b-c)(a+c-b)(b+c-a) = 0 
nếu a + b = c =>(b^2+c^2-a^2)/2bc = 1 ; (a^2+c^2-b^2)/2ca = 1 và (a^2+b^2-c^2)/2ab = -1 
xét tương tự cho các trường hợp a + c-b = 0 và b+c-a = 0 suy ra DPCM 

20 tháng 9 2017

Câu hỏi của Minh Triều - Toán lớp 9 - Học toán với OnlineMath

7 tháng 5 2016

tính từng gtrị của a,b,c,d ( theo a+b+c+d=0)

rồi tính ab,cd,bc,da,ca,bd 

rồi thay vô thôi

nếu ko giải dc ntin cho mk

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.