K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

6 tháng 4 2017

a. Xét hiệu: \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\)

=\(\dfrac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)

\(=\dfrac{a^2-2ab+b^2}{ab\left(a+b\right)}=\dfrac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Vì a,b>0

Xảy ra đẳng thức khi và chỉ khi a=b

6 tháng 4 2017

a) Ta có: \(\left(a-b\right)^2\ge0\left(1\right)\forall a,b\)

( Dấu = xày ra khi và chỉ khi a=b)

Cộng 4ab vào 2 vế, ta có:

\(\left(a-b\right)^2+4ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Chia 2 vế cho ab(a+b)>0, ta có:

\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\)\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b) Ta có:

\(2p=a+b+c\)

\(p-a=\dfrac{a+b+c}{2}-a=\dfrac{b+c-a}{2}>0\) vì b+c>a

Tương tự: \(p-b>0,p-c>0\)

Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)cho từng cặp số p-a, p-b; p-b,p-c;p-c,p-a

Ta có:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{\left(p-a\right)+\left(p-b\right)}=\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\left(1\right)\)

Tương tự:

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\left(3\right)\)

Cộng các BĐT cùng chiều (1), (2), (3) vế theo vế, ta có:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Do đó: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

8 tháng 2 2022

Ta có :

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{2}{c}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{p-a+p-c}=\dfrac{2}{a}\)

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{p-c+p-a}=\dfrac{2}{b}\)

Cộng từng về ta có đpcm

8 tháng 2 2022

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)

Áp dụng:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)

Mà \(2p=a+b+c\)

\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\)

Tương tự \(\Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\)

\(\Rightarrowđpcm\)

8 tháng 3 2018

BĐT cô si: \(\dfrac{x+y}{2}>\left(hoặc=\right)\sqrt{xy}\)

=>x+y >(hoặc =) \(2\sqrt{xy}\)

=>\(\left(x+y\right)^2>\left(hoặc=\right)4xy\)

=>\(\dfrac{1}{x}+\dfrac{1}{y}>\left(hoặc=\right)\dfrac{4}{x+y}\)

vì P=\(\dfrac{a+b+c}{2}=>a+b+c=2p\)

=>c=2p-a-b

b=2p-a-c

a=2p-b-c

ta có:\(\dfrac{1}{p-a}+\dfrac{1}{p-b}>hoặc=\dfrac{4}{p-a+p-b}=\dfrac{4}{c}\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-a+p-c}=\dfrac{4}{b}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-b+p-c}=\dfrac{4}{a}\)

cộng vế với vế ta đc

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)>\left(hoặc=\right)4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

<=>\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

a)a,b,c là độ dài 3 cạnh của 1 tam giác

\(\Rightarrow a< b+c\Rightarrow a^2< ab+ac\)

TT\(\Rightarrow b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng vế theo vế ta có đpcm

b)BĐT\(\Leftrightarrow\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{a+b+c}{b+c-a}+\dfrac{a+b+c}{a+c-b}+\dfrac{a+b+c}{a+b-c}\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\right)\ge9\)(đúng theo AM-GM)

28 tháng 5 2017

Đề phải là \(\ge\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}=\dfrac{1}{\dfrac{-a+b+c}{2}}+\dfrac{1}{\dfrac{a-b+c}{2}}+\dfrac{1}{\dfrac{a+b-c}{2}}=2\left(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\right)\)

Áp dụng BĐT trong tam giác:

a+b>c=>a+b-c>0

a+c>b=>a-b+c>0

b+c>a=>-a+b+c>0

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)cho 2 số dương:

\(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}\ge\dfrac{4}{2c}=\dfrac{2}{c}\)

Dấu = xảy ra khi -a+b+c=a-b+c<=>a=b

\(\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\ge\dfrac{4}{2a}=\dfrac{2}{a}\)

Dấu = xảy ra khi a-b+c=a+b-c<=>b=c

\(\dfrac{1}{a+b-c}+\dfrac{1}{-a+b+c}\ge\dfrac{4}{2b}=\dfrac{2}{b}\)

Dấu = xảy ra khi a+b-c=-a+b+c<=>a=c

=>\(2\left(\dfrac{1}{-a+b+c}+\dfrac{1}{a-b+c}+\dfrac{1}{a+b-c}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

Hay \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>tam giác ABC đều

18 tháng 1 2019

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

Áp dụng BĐT Cô-si cho 2 số không âm:

\(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)

Dấu "=" xảy ra <=> a = b = c

Vậy, △ABC là tam giác đều (đpcm)

18 tháng 1 2019

Áp dụng bất đẳng thức Cô si ta có:

\(VT=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\ge2\sqrt{\dfrac{b}{a}}\cdot2\sqrt{\dfrac{c}{b}}\cdot2\sqrt{\dfrac{a}{c}}=8\sqrt{\dfrac{abc}{abc}}=8=VP\)

Dấu "=" xảy ra khi a = b = c

Mà VT = VP => a = b = c

=> tam giác ABC đều

6 tháng 11 2018

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}.\dfrac{b+c}{b}.\dfrac{c+a}{c}=8\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

Với mọi \(a,b,c>0\) ta có :

+) \(\left(a+b\right)^2\ge4ab\) Dấu bằng xảy ra \(\Leftrightarrow a=b\)

+) \(\left(b+c\right)^2\ge4bc\) Dấu bằng xảy ra \(\Leftrightarrow b=c\)

+) \(\left(c+a\right)^2\ge4ca\) Dấu bằng xảy ra \(\Leftrightarrow c=a\)

\(\Leftrightarrow\left(a+b\right)^2.\left(b+c\right)^2.\left(c+a\right)^2\ge64a^2b^2c^2\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\Leftrightarrow\Delta ABC\) đều \(\left(đpcm\right)\)

6 tháng 11 2018

AM-GM 1 dòng