Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)
Tương tự cộng lại là xong
Theo bất đẳng thức Cauchy, ta có:
\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)
\(\Rightarrow P\ge a+b+c+6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)
\(\Leftrightarrow minP=1+1+1+6=9\)
\(VT=3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\left(3a+\frac{2}{a}\right)+\left(3b+\frac{2}{b}\right)+\left(3c+\frac{2}{c}\right)\)
*Nháp*
Dự đoán điểm rơi tại a = b = c = 1 khi đó VT = 15
Ta dự đoán BĐT phụ có dạng \(3x+\frac{2}{x}\ge mx^2+n\)(Ta thấy hạng tử trong điều kiện đã cho ban đầu có bậc là 2 nên VP của BĐT phụ cũng có bậc 2) (*)
Do đó ta có: \(3a+\frac{2}{a}\ge ma^2+n\);\(3b+\frac{2}{b}\ge mb^2+n\);\(3c+\frac{2}{c}\ge mc^2+n\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=15\)
\(\Rightarrow m+n=5\Rightarrow n=5-m\)
Thay n = 5 - m vào (*), ta được: \(3x+\frac{2}{x}\ge mx^2+5-m\)
\(\Leftrightarrow\frac{3x^2-5x+2}{x}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{x\left(x+1\right)}\ge m\left(x-1\right)\)
\(\Leftrightarrow m\le\frac{3x-2}{x\left(x+1\right)}\)(**)
Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{2}\Rightarrow n=\frac{9}{2}\)
Ta được BĐT phụ \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)
GIẢI:
Ta có: \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a;b;b\le\sqrt{3}\)
Ta chứng minh BĐT phụ sau: \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)(với \(0< x\le\sqrt{3}\))
\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{2x}\ge0\)(đúng với mọi \(0< x\le\sqrt{3}\))
Áp dụng, ta được: \(3a+\frac{2}{a}\ge\frac{a^2}{2}+\frac{9}{2}\);\(3b+\frac{2}{b}\ge\frac{b^2}{2}+\frac{9}{2}\);\(3c+\frac{2}{c}\ge\frac{c^2}{2}+\frac{9}{2}\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}.3=15\)
Đẳng thức xảy ra khi a = b = c = 1
hình chử nhật có chu vi là 150m chiều dài hơn chiều rộng là 15m tìm tỉ số của chiều rộng và chiều dài hinh chử nhật đó
\(a^2+b^2+c^2=3\Rightarrow0< a;b;c< \sqrt{3}\)
Với mọi số thực \(x\in\left(0;\sqrt{3}\right)\) ta có đánh giá sau:
\(2x+\frac{1}{x}\ge\frac{x^2+5}{2}\)
Thật vậy, BĐT tương đương:
\(2\left(2x^2+1\right)-x\left(x^2+5\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(2-x\right)\ge0\) (luôn đúng với mọi \(x\in\left(0;\sqrt{3}\right)\))
Áp dụng: \(P=2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{a^2+b^2+c^2+15}{2}=9\)
\(P_{min}=9\) khi \(a=b=c=1\)
THƯA CHỊ BÀI NÀY LÀ SAO AK, E HỌC LỚP 5 ** BIK BÀI NÀY NHÉ ~_~ !!!!!!!!!!!
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
Câu hỏi của Hắc Dương - Toán lớp 9 - Học toán với OnlineMath