K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng BĐT Cauchy ta có:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

Tương tự ta cũng có:

\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)

\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)

\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)

Cộng theo vế các BĐT trên, ta được:

\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)

Dấu "=" xảy ra.....

Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))

 

NV
4 tháng 2 2020

\(VT=a^2+b^2+c^2+d^2-2\left(a+c\right)\left(b+d\right)\)

\(VT\ge\frac{1}{4}\left(a+b+c+d\right)^2-\frac{1}{2}\left(a+b+c+d\right)^2=-\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)

4 tháng 2 2020

cauch-schwarz dạng phân thức hả bn?

18 tháng 1 2015

áp dụng AM-GM

a2+4>=4a

b2+4>=4b

c2+4>=4c

d2+4>=4d

nhân vế suy ra ĐPCM

từ cái điều kiện đầu=>a;b;c;d<(=)2

=>a4(2-a)+b4(2-b)+c4(2-c)+d4(2-d)>(=)0

<=>2a2+2b4+2c4+2d4>(=)a5+b5+c5+d5

<=>32>(=)a5+b5+c5+d5(đpcm)

dấu bằng khi 1 trong 4 số =2

2 tháng 8 2017

vâng mình biết dùng AM-GM rồi mà dùng sao huhu ;-;

11 tháng 8 2015

\(a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+4\ge2a+2b+2c+2d\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1+d^2-2d+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(d-1\right)^2\ge0\)\(\left(\text{luôn đúng với mọi a,b,c,d}\right)\)

\(\text{Vậy }a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)

\(\text{Dấu "=" xảy ra khi a=b=c=d=1}\)

11 tháng 8 2015

Cách khác cho bạn nè:

Áp dụng BĐT cô si cho 2 số không âm ta có:

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

\(d^2+1\ge2d\)

Cộng vế với vế ta được a2+1+b2+1+c2+1+d2+1>2a+2b+2c+2d

=>a2+b2+c2+d2+4>2(a+b+c+d)