K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Bài 1:

a) Gọi số liền sau là a+1. Vì a dương (a<0) nên số liền sau a hơn a 1 đơn vị nên cũng là số dương.=>đpcm.

b) Ta có:Nếu a âm thì a<0. Số liền trước a nhỏ hơn a nên cũng là số âm.

c) Vậy ta có thể kết luận: Số liền trước của 1 số dương chua chắc là số dương ( Trường hợp a=1, số liền trước a là 0, không phải số dương). Số liền sau của một số âm chưa chắc là số âm ( Trường hợp a=-1 thì số liền sau a là 0 và không là số âm).

18 tháng 3 2016

thanks nhéhaha

25 tháng 1 2016

    65

16 tháng 2 2016

Ta có:

\(a+b=c+d\)

\(\Rightarrow d=a+b-c\)

Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

Mà \(\Rightarrow d=a+b-c\) nên ta có:

\(ab-cd=1\)

\(\Rightarrow ab-c\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2=1\)

\(\Rightarrow a.\left(b-c\right)-c.\left(b-c\right)=1\)

\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)

\(a,b,c\in Z\) nên \(\left(a-c\right)\left(b-c\right)=1.1\) hoặc \(\left(a-c\right)\left(b-c\right)=\left(-1\right)\left(-1\right)\)

Do đó \(a-c=b-c\)

\(\Rightarrow a=b\)

Vậy a=b.

 

15 tháng 2 2016

vào đây tham khảo nha http://olm.vn/hoi-dap/question/59155.html

13 tháng 8 2018

log 1 a b a c 2 =  - log a b a c 2

=  - 1 n log a b + 2 log a c

Đáp án cần chọn là D

2 tháng 5 2018

4 tháng 2 2016

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

19 tháng 4 2018

Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)

\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)

Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp

\(\Rightarrow a-1⋮2\)

Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2

=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn

Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.

Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))

\(\Rightarrow\) $a + b + c + d$ là hợp số.

14 tháng 6 2019

11/Theo BĐT AM-GM,ta có; \(ab.\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)\(=\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự với hai BĐT kia,cộng theo vế và rút gọn ta được đpcm.

Dấu "=" xảy ra khi a= b=c

14 tháng 6 2019

Ơ vãi,em đánh thiếu abc dưới mẫu,cô xóa giùm em bài kia ạ!

9/ \(VT=\frac{\Sigma\left(a+2\right)\left(b+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+8+abc+\left(ab+bc+ca\right)}\)

\(\le\frac{ab+bc+ca+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+9+3\sqrt[3]{\left(abc\right)^2}}\)

\(=\frac{ab+bc+ca+4\left(a+b+c\right)+12}{ab+bc+ca+4\left(a+b+c\right)+12}=1\left(Q.E.D\right)\)

"=" <=> a = b = c = 1.

Mong là lần này không đánh thiếu (nãy tại cái tội đánh ẩu)