Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos\left(\frac{x}{2}+15^0\right)=sinx=cos\left(90^0-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}+15^0=90^0-x+k360^0\\\frac{x}{2}+15^0=x-90^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=50^0+k240^0\\x=210^0+k720^0\end{matrix}\right.\)
Với \(k=1\Rightarrow x=290^0\)
Bài 2:
\(\Leftrightarrow2sinx+2sinx.cosx-cosx-cos^2x-sin^2x=0\)
\(\Leftrightarrow2sinx+2sinx.cosx-cosx-1=0\)
\(\Leftrightarrow2sinx\left(cosx+1\right)-\left(cosx+1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\) đáp án B
3/ \(y=\frac{sinx+cosx-1}{sinx-cosx+3}\)
\(\Leftrightarrow y.sinx-y.cosx+3y=sinx+cosx-1\)
\(\Leftrightarrow\left(y-1\right)sinx-\left(y+1\right)cosx=-3y-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-1\right)^2+\left(y+1\right)^2\ge\left(-3y-1\right)^2\)
\(\Leftrightarrow7y^2+6y-1\le0\)
\(\Rightarrow-1\le y\le\frac{1}{7}\Rightarrow y_{max}=\frac{1}{7}\)
3.
ĐKXĐ; ..
\(\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)
\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
4.
\(\Leftrightarrow2cos^2x-1-3cosx=2+2cosx\)
\(\Leftrightarrow2cos^2x-5cosx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=3>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)
1.
\(\Leftrightarrow3\left(2cos^22x-1\right)-\left(1-cos^22x\right)+cos2x-2=0\)
\(\Leftrightarrow7cos^22x+cos2x-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{6}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{1}{2}arccos\left(\frac{6}{7}\right)+k\pi\end{matrix}\right.\)
2.
ĐKXĐ: ...
\(\Leftrightarrow1+cot^2x+3cotx+1=0\)
\(\Leftrightarrow cot^2x+3cotx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)
e.
\(3\left(1-sin^2x\right)-5sinx-1=0\)
\(\Leftrightarrow-3sin^2x-5sinx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
f.
\(2\left(2cos^2x-1\right)-cosx+7=0\)
\(\Leftrightarrow4cos^2x-cosx+5=0\)
Phương trình vô nghiệm
g.
\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)
Phương trình vô nghiệm
h.
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
1d.
Đề ko rõ
1e.
\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)
\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)
\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)
\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)
2b.
Đề thiếu
2c.
Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)
\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)
\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)
\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)
\(\Leftrightarrow...\)
1.
a.
\(\Leftrightarrow sin\left(3x-30^0\right)=sin\left(45^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-30^0=45^0+k360^0\\3x-30^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{75^0}{3}+k120^0\\x=\frac{165^0}{3}+k120^0\end{matrix}\right.\)
b.
\(sin\left(5x-\frac{\pi}{3}\right)=sin\left(2\pi-\frac{\pi}{4}-2x\right)\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{3}\right)=sin\left(-\frac{\pi}{4}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{3}=-\frac{\pi}{4}-2x+k2\pi\\5x-\frac{\pi}{3}=\frac{5\pi}{4}+2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{84}+\frac{k2\pi}{7}\\x=\frac{19\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
c.
\(4x-\frac{\pi}{3}=k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
d.
\(sin\left(2x+\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow2x+\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{3}+k\pi\)
Do \(x\in\left(-\frac{\pi}{4};2\pi\right)\Rightarrow-\frac{\pi}{4}< -\frac{\pi}{3}+k\pi< 2\pi\)
\(\Rightarrow\frac{1}{12}< k< \frac{7}{3}\Rightarrow k=\left\{1;2\right\}\)
\(\Rightarrow x=\left\{\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)
e.
\(sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{6}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k2\pi\\x=\frac{7\pi}{12}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{12};\frac{7\pi}{12}\right\}\)
1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)
\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)
\(\Leftrightarrow sinx=1\)
3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)
\(\Leftrightarrow3cos2x-4sin2x=-4\)
\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)
\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)
4,5 giải tương tự câu 3
1.
\(-1\le sinx\le1\Rightarrow-6\le y\le4\)
b.
\(y=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\Rightarrow-\frac{1}{2}\le y\le1\)
2.
a.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
b. Đề chắc chắn đúng chứ bạn?
\(\Leftrightarrow\sqrt{3}\left(1+tan^2\left(x+1\right)\right)+\left(1-\sqrt{3}\right)sinx-1-\sqrt{3}=0\)
\(\Leftrightarrow\frac{\sqrt{3}}{1-sin^2\left(x+1\right)}+\left(1-\sqrt{3}\right)sin\left(x+1\right)-1-\sqrt{3}=0\)
\(\Leftrightarrow\left(\sqrt{3}-1\right)sin^3\left(x+1\right)+\left(1+\sqrt{3}\right)sin^2\left(x+1\right)+\left(1-\sqrt{3}\right)sin\left(x+1\right)-1=0\)
Pt bậc 3 này ko giải được :)
Nên chắc bạn ghi sai đề
đề giáo viên cho tui vậy mà