K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng vơi ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC
c: \(AH=\sqrt{10^2-8^2}=6\left(cm\right)\)

HB=6^2/8=4,5cm

BC=8+4,5=12,5cm

S=6*12,5/2=37,5cm2

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔKAH vuông tại K và ΔHCA vuông tại H có

góc KAH=góc HCA

=>ΔKAH đồng dạng với ΔHCA

=>AH/CA=KH/HA

=>AH^2=KH*AC

c: Xét ΔHAC có HQ/HC=HP/HA

nên QP//AC

=>QP vuông góc AB

Xét ΔQAB có

QP,AH là đường cao

QP cắt AH tại P

=>P là trựctâm

=>BP vuông góc AQ tại M

17 tháng 11 2018

A B C D E H Q P O

a) Tg ADHE có \(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^o\)

=> Tg ADHE là hcn

=> DE = AH ( t/c hcn )

b) ΔECH vuông ở E => EQ = HQ = \(\dfrac{1}{2}HC\)

+)Tg ADHE là hcn

=> OH = OE = OD

+)Xét ΔQEO và ΔQHO có :

HQ = EQ ( cmt )

OH = OE ( cmt )

OQ chung

=> ΔQEO = ΔQHO ( c.c.c )

=> \(\widehat{OHQ}=\widehat{OEQ}\\ mà:\widehat{OHQ}=90^o\Rightarrow\widehat{QEO}=90^o\Rightarrow EQ\perp DE\)

cmtt , được ΔDPO = ΔHPO ( c.c.c ) => PD ⊥ DE

+) \(EQ\perp DE\\ PD\perp DE\) ( cmt ) ==> EQ // PD => Tg DEQP là hình thang

\(\widehat{PDE}=90^o\left(cmt\right)\) => Tg DEQP là hình thang cân

c) Dễ c/m được QO là đường trung bình ΔAHC

=> QO // AC mà AC ⊥ AB => QO ⊥ AB

=> QO là đường cao ΔABQ tại đỉnh B

+) ΔABQ có AH , QO lần lượt là đường cao của BQ và AB

\(AH\cap QOtạiO\)

=> O là trực tâm ΔABQ

d) Ta có :

\(S_{ABC}=\dfrac{1}{2}BC\cdot AH\\ =\dfrac{1}{2}\left(BH+CH\right)\cdot DE\\ =\dfrac{1}{2}\left(2DP+2EQ\right)\cdot DE\\ =\dfrac{1}{2}\cdot2\cdot\left(DP+EQ\right)\cdot DE\\ =\left(DP+EQ\right)\cdot ED\)

\(S_{DEQP}=\dfrac{1}{2}\left(DP+EQ\right)\cdot ED\)

mà SABC = ( DP + EQ ) . DE

=> SABC = 2SDEQP

21 tháng 2 2020

Vì sao OQ//AC vậy ?????????????

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC