Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
=2018.2018/2019.2019
=1.1/1.1
=1/1
1/1=444444/444444
vì 888887>4444444=>888887/444444>4444444/444444
Ta có :
\(B=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\)\(\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
a) Ta có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
Vì 0<a<b nên ab+ac<ab+bc
\(\Rightarrow\frac{ab+ac}{b\left(b+c\right)}>\frac{ab+bc}{b\left(b+c\right)}\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)
What is the question ???
so sánh