Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)
Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{matrix}\right.\)
\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Mà \(x^2+\left(y-\frac{1}{10}\right)^4=0\)
Xảy ra khi \(\left\{\begin{matrix}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\y=\frac{1}{10}\end{matrix}\right.\)
b)\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Ta thấy: \(\left\{\begin{matrix}\left(x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà \(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Suy ra \(\left\{\begin{matrix}\left(x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-5=0\\y^2-\frac{1}{4}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=5\\y=\pm\frac{1}{2}\end{matrix}\right.\)
Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Leftrightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
*)\(2^3=8;2^6=64\)
Mà \(8< 64=>2^3< 2^6\)
*)\(\left(\left(-\dfrac{1}{2}\right)^2\right)^3=\left(-\dfrac{1}{2}\right)^6=\left(-\dfrac{1^6}{2^6}\right)=\dfrac{1}{64}\)
\(\left(-\dfrac{1}{2}\right)^5=\left(\dfrac{-1^5}{2^5}\right)=\left(\dfrac{-1}{32}\right)\)
Vì \(\dfrac{1}{64}>\left(\dfrac{-1}{32}\right)\)
\(=>\left(\left(-\dfrac{1}{2}\right)^2\right)^3>\left(-\dfrac{1}{2}\right)^5\)
\(\left(\dfrac{1}{2}x-5\right)\left(3x^2-15\right)=0\)
\(\left(\dfrac{1}{2}x-5\right)\left(x^2-5\right)=0\)
\(\Rightarrow\dfrac{1}{2}x-5=0hoặcx^2-5=0\)
\(TH_1:\dfrac{1}{2}x-5=0\)
\(\Rightarrow x=10\)
\(TH_2:x^2-5=0\)
\(\Rightarrow x=\sqrt{5}\)
Vậy x\(\in\left\{10;\sqrt{5}\right\}\)