Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
\(=-2.\frac{2}{3}.\frac{1}{3}:\left(\frac{-1}{6}+0,5\right)-\left(-2009^0\right)-\left(-2\right)^2\)
\(=\frac{4}{3}.\frac{1}{3}:\left(\frac{-1}{6}+\frac{1}{2}\right)-1.4\)
\(=\frac{4}{3}.\frac{1}{3}+4\)
\(=4+4\)
\(=8\)
\(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}.\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}-\frac{1}{3}+1\)
\(\Rightarrow-7x=\frac{-1}{6}\)
\(\Rightarrow x=\frac{1}{42}\)
Vậy ...
\(\)
\(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Rightarrow3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Rightarrow3x=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{18}\)
Vậy...