Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Q là trung điểm của AN
Xét ΔAMN có
P là trung điểm của AM(gt)
Q là trung điểm của AN(gt)
Do đó: PQ là đường trung bình của ΔAMN(Định nghĩa đường trung bình của tam giác)
Suy ra: PQ//MN và \(PQ=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay MN//CP(đpcm)
Đáp án:
Giải thích các bước giải:
a, ta có tỉ lệ \(\frac{AM}{AB}\)= \(\frac{3}{3+2}\)= \(\frac{3}{5}\)
\(\frac{AN}{AC}\)= \(\frac{7,5}{7,5+5}\)= \(\frac{3}{5}\)do đó \(\frac{AM}{AB}\)= \(\frac{AN}{AC}\)suy ra đpcm
b ) vì MN//BC nên \(\frac{MK}{BI}\)= \(\frac{NK}{CT}\)= \(\frac{AK}{AI}\)mà BI = IC nên MK = KN suy ra K là trung điểm MN
C A B Q P N M
a) Ta có: \(PA=PM\)(giả thiết)
\(\Rightarrow2PM=AM\)
\(\frac{2BM}{AM}=\frac{BN}{CN}\)(giả thiết)
\(\Rightarrow\frac{2BM}{2PM}=\frac{BN}{CN}\)(thay số)
\(\Rightarrow\frac{BM}{PM}=\frac{BN}{CN}\)(1)
Xét \(\Delta BPC\)có : (1) (chứng minh trên)
\(\Rightarrow MN//CP\)(định lí Ta-lét đảo) (điều phải chứng minh)