K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c\left(đpcm\right)}\)

24 tháng 12 2018

Dạng nì mik làm rồi ak =_= nhưng sai thì bạn ib mik nha =))

Có :  \(a^2+b^2+c^2=ab+bc+ca.\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (*)

Ta có  (**)\(\left(a-b\right)^2\ge0\)

         \(\left(b-c\right)^2\ge0\)

         \(\left(c-a\right)^2\ge0\)

Từ (*) và (**) => cả a,b,c đều lớn hơn hoặc bằng 0

\(\Rightarrow a-b=0;b-c=0;c-a=0\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

hok tốt ạ

26 tháng 5 2015

Dùng hằng đang thuc la ra~~~daif qua nen ngai viet

26 tháng 5 2015

p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r

16 tháng 2 2021

1) Ta có a2 + b2 + c2 = ab + bc + ca

=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0

=> (a - b)2 + (b - c)2 + (a - c)2 = 0

=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

16 tháng 2 2021

a^2 + b^2 + c^2 = ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0

<=> a-b = 0 và b-c=0 và c-a=0

<=> a=b=c

a^2/b+c + b^2/a+c + c^2=a+b

= a(a/b+c) + b(b/a+c) + c(c/a+b)

= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)

= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c

= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)

mà a/b+c + b/a+c + c/a+b = 1

= a+b+c - (a+b+c)

= 0

16 tháng 8 2017

Gợi ý nhé, biến đổi biểu thức ở vế phải:

Bạn xem a2b2 = A2

b2c2 = B2

c2a2 = C2

=> A2 + B2 + C2 (hằng đẳng thức số 3)

16 tháng 8 2017

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+a^2c^2+2abc.0=a^2b^2+b^2c^2+a^2c^2\left(đpcm\right)\)

25 tháng 7 2021

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

30 tháng 9 2015

 Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=>a=b=c

 

30 tháng 9 2015

đừng có sao chép trog câu hỏi tương tự nữa -_-

3 tháng 11 2014

a) Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=>a=b=c

24 tháng 4 2016

không biết

:) :)

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

Bình phương hai vế:

\(\left(a^2+b^2+c^2\right)^2=[-2\left(ab+bc+ac\right)]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)(*)

\(\Leftrightarrow a^4+b^4+c^4=4[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(**)

Từ (*) và (**):

\(2\left(a^4b^4c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

7 tháng 9 2017

ta có \(a^2+b^2+c^2=ab+bc+ca\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)

=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\) (ĐPCM)

7 tháng 9 2017

\(a^2+b^2+c^2=ab+bc+ca\)

<=> \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)

=> a-b=0 ; b-c =0 ; a-c=0

=> a=b ; b=c ; c=a

=> a=b=c

7 tháng 9 2017

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\) (đpcm)