Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r
1) Ta có a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
<=> a-b = 0 và b-c=0 và c-a=0
<=> a=b=c
a^2/b+c + b^2/a+c + c^2=a+b
= a(a/b+c) + b(b/a+c) + c(c/a+b)
= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)
= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c
= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)
mà a/b+c + b/a+c + c/a+b = 1
= a+b+c - (a+b+c)
= 0
Gợi ý nhé, biến đổi biểu thức ở vế phải:
Bạn xem a2b2 = A2
b2c2 = B2
c2a2 = C2
=> A2 + B2 + C2 (hằng đẳng thức số 3)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=>a=b=c
a) Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=>a=b=c
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
Bình phương hai vế:
\(\left(a^2+b^2+c^2\right)^2=[-2\left(ab+bc+ac\right)]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)(*)
\(\Leftrightarrow a^4+b^4+c^4=4[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(**)
Từ (*) và (**):
\(2\left(a^4b^4c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
ta có \(a^2+b^2+c^2=ab+bc+ca\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)
=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\) (ĐPCM)
\(a^2+b^2+c^2=ab+bc+ca\)
<=> \(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)
=> a-b=0 ; b-c =0 ; a-c=0
=> a=b ; b=c ; c=a
=> a=b=c
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\) (đpcm)
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c\left(đpcm\right)}\)
Dạng nì mik làm rồi ak =_= nhưng sai thì bạn ib mik nha =))
Có : \(a^2+b^2+c^2=ab+bc+ca.\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (*)
Ta có (**)\(\left(a-b\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
\(\left(c-a\right)^2\ge0\)
Từ (*) và (**) => cả a,b,c đều lớn hơn hoặc bằng 0
\(\Rightarrow a-b=0;b-c=0;c-a=0\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
hok tốt ạ