Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(a,\dfrac{x-1}{10}+\dfrac{x-1}{11}=\dfrac{x-1}{12}+\dfrac{x-1}{13}\)
\(\Rightarrow\dfrac{x-1}{10}+\dfrac{x-1}{11}-\dfrac{x-1}{12}-\dfrac{x-1}{13}=0\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)=0\)
Mà \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\ne0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Vậy x = 1
b, \(\dfrac{x-2000}{10}+\dfrac{x-1999}{9}=\dfrac{x-1998}{8}+\dfrac{x-1997}{7}\)
\(\Rightarrow\dfrac{x-2000}{10}+1+\dfrac{x-1999}{9}+1=\dfrac{x-1998}{8}+\dfrac{x-1997}{7}+1\)
\(\Rightarrow\dfrac{x-1990}{10}+\dfrac{x-1990}{9}-\dfrac{x-1990}{8}-\dfrac{x-1990}{7}=0\)
\(\Rightarrow\left(x-1990\right)\left(\dfrac{1}{10}+\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{7}\right)=0\)
Mà \(\dfrac{1}{10}+\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{7}\ne0\)
\(\Rightarrow x-1990=0\Rightarrow x=1990\)
Bài 9,
62x73+36x33=36x73+36x27=36(73+27)=36x100=3600.
197-\([\)6x(5-1)2+20220\(]\):5=197-\([\)6x16+1\(]\):5=197-97:5=197-97/5=888/5.
Bài 10,
21-4x=13
=>4x=21-13=8
=>x=8:4=2.
30:(x-3)+1=45:43=42=16
=>30:(x-3)=16-1=15
=>x-3=30:15=2
=>x=2+3=5.
(x-1)3+5x6=38
=>(x-1)3+30=38
=>(x-1)3=38-30=8=23
=>x-1=2
=>x=3.
a) \(25-\left(25-x\right)=12+\left(42-65\right)\)
\(25-\left(25-x\right)=12+\left(-23\right)\)
\(25-\left(25-x\right)=-11\)
\(25-x=25-\left(-11\right)\)
\(25-x=36\)
\(x=25-36\)
\(x=-11\)
Làm 2 câu dài cho bạn nhá! Mấy câu ngắn tương tự!
a, \(25-\left(25-x\right)=12+\left(42-65\right)\)
\(\Rightarrow25-25+x=12+42-65\)
\(\Rightarrow x=-11\)
b, \(215+\left(-38\right)-54+90-\left(-48+x\right)=0\)
\(\Rightarrow215-38-54+90+48-x=0\)
\(\Rightarrow x=261\)
m, \(\left|x\right|-5=12\)
\(\Rightarrow\left|x\right|=17\Rightarrow\left\{{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Chúc bạn học tốt!!!
2.
a,\(50-\left[\left(50-2^3.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left(10:2+3\right)\)
\(=50-8\)
\(=42\)
b,\(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)
\(=8697-\left(3^2+2.10\right)\)
\(=8697-\left(9+20\right)\)
\(=8697-29\)
\(=8668\)
c,\(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)
\(=205-200:40\)
\(=200\)
2)
a) \(50-\left[\left(50-2^3.5\right):2+3\right]\)
\(=50-\left[\left(50-8.5\right):2+3\right]\)
\(=50-\left[\left(50-40\right):2+3\right]\)
\(=50-\left(10:2+3\right)\)
\(=50-\left(5+3\right)\)
\(=50-8\)
\(=42\)
b) \(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)
\(=8697-\left(3^7:3^5+2.10\right)\)
\(=8697-\left(3^{7-5}+2.10\right)\)
\(=8697-\left(3^2+2.10\right)\)
\(=8697-\left(9+2.10\right)\)
\(=8697-\left(9+20\right)\)
\(=8697-29\)
\(=8668\)
c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)
\(=205-\left[1200-\left(16-2.3\right)^3\right]:40\)
\(=205-\left[1200-\left(16-6\right)^3\right]:40\)
\(=205-\left(1200-10^3\right):40\)
\(=205-\left(1200-1000\right):40\)
\(=205-200:40\)
\(=205-5\)
\(=200\)