K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

a) giả sử \(x\ge y\ge3\)

P(x)=x+1/x

P(y)=y+1/y

P(x)-p(y)=(x+1/x)-(y+1/y)=(x-y)+(1/x-1/y)=A

\(x\ge y\ge3\Rightarrow\frac{1}{x}\le\frac{1}{y}\hept{\begin{cases}x-y\le0\\\frac{1}{x}-\frac{1}{y}\le0\end{cases}\Rightarrow A\le0}\)

Kết luận a cành lớn thì P(a) càng lớn

=> Pmin=P(3)=3+1/3=10/3

26 tháng 12 2016

Ok ta cần chứng minh A>=0

\(A=\left(x-y\right)+\left(\frac{1}{x}-\frac{1}{y}\right)=\left(x-y\right)+\frac{\left(y-x\right)}{xy}=\left(x-y\right)-\frac{\left(x-y\right)}{xy}\\ \)

\(A=\left(x-y\right)\left[1-\frac{1}{xy}\right]\)

\(x\ge y\ge3\Rightarrow\hept{\begin{cases}x-y\ge0\\xy\ge9\\\frac{1}{xy}\le\frac{1}{9}< 1\Rightarrow1-\frac{1}{xy}>0\end{cases}}\Rightarrow A\ge0\)

26 tháng 12 2016

Ta có: a^2 + 2a +2014 = a^2 +2a +1 +2013
=(a+1)^2 + 2013
Ta có: (a+1)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R
=> (a+1)^2 +2013 lớn hơn hoặc bằng 2013 với mọi x thuộc R
Dáu "=" xảy ra <=> (a+1)^2 + 2013=2013
<=> a+1=0
<=> a=-1
Vậy min a^2-2a+2014 là 2013 tại x=-1

26 tháng 12 2016

công thức tổng quát (n+1-n)/n(n+1)

a.)1/x(x+1)+1(x+1)(x+2)+...+1/(x+99)(x+110

=1/x-1(x+1)+1/(x+1)-1/(x+1)+...+1/(x+99)-1/(x+100)

=1/x-1/(x+100)

=(x+100-x)/x(x+100)

=100/x(x+100)

b;)1/(x-1)(x-2)+2/(x-2)(x-3)-3/(x-3)(x-1)

=(x-3)/(x-1)(x-2)(x-3)+(2x-1)/(x-1)(x-2)(x-3)-(3x-6)/(x-1)(x-2)(x-3)

=(x-3+2x-1-3x+6)/(x-1)(x-2)(x-3)

=2/(x-1)(x-2)(x-3)

26 tháng 12 2016

Câu a không hiểu cho lắm

26 tháng 12 2016

giá trị nhỏ nhất của N là 11.

k mình nha

26 tháng 12 2016

Ta có :

\(\left(x-1\right)\left(x-3\right)+11\)

\(=\left[\left(x-2\right)+1\right]\left[\left(x-2\right)-1\right]+11\)

\(=\left(x-2\right)^2-1^2+11\)

\(=\left(x-2\right)^2+10\ge0+10=10\)

\(\Rightarrow Min_N=10\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy ...

26 tháng 12 2016

Cho ví dụ cụ thể xem nào

26 tháng 12 2016

ko dấu nhân thì chỉ có mẫu khác 0 thôi bạn