K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\) 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

8 tháng 1 2018

|x+3|+|x+2|=7

|x+3|+|x+2|=7-3

          |x+2|=4

          |x+2|=4-2

           x+2|=2

                 x=2:2

                  x=1

                   

x+3+x+2=7

<=> x+x=7-3-2

<=> 2x=2

<=> x=2:2=1

8 tháng 1 2018

a)

Tìm nghiệm nguyên dương của phương trình,6x + 5y + 18 = 2xy,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Nhận thấy: x phải là số lẻ. Vì nếu x là số chẵn thì 3x^2 sẽ là số chẵn => 3x^2-4y^2 là số chẵn trong khi 13 là số lẻ 

x là số lẻ => x có dạng x= 2k+1 với k thuộc Z 
thay x=2k+1 vào phương trình ta có: 
3(4k^2+4k+1) - 4y^2 = 13 
<=> 6k^2+6k-2y^2=5 
<=> 6k(k+1) = 5+2y^2 

Dễ thấy vế trái là số chẵn trong khi vế phải là số lẻ => phương trình không có nghiệm nguyên => dpcm

8 tháng 1 2018

B C A M N H K O

a) Tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét tam giác ABM và tam giác ACN có:

AB = AC

MB = NC

\(\widehat{ABM}=\widehat{ACN}\)

\(\Rightarrow\Delta ABM=\Delta ACN\left(c-g-c\right)\)

b) Do \(\Delta ABM=\Delta ACN\Rightarrow\widehat{BAH}=\widehat{CAK}\)  (Hai góc tương ứng)

Xét tam giác vuông AHB và AKC có:

AB = AC (gt)

\(\widehat{BAH}=\widehat{CAK}\)

\(\Rightarrow\Delta AHB=\Delta AKC\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow AH=AK\)

c) Ta có \(\Delta AHB=\Delta AKC\Rightarrow HB=KC\)

Xét tam giác vuông AHO và AKO có:

AH = AK

AO chung

\(\Rightarrow\Delta AHO=\Delta AKO\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HO=KO\)

Mà HB = CK nên OB = OH - HB = OK - CK = OC

Vậy nên tam giác OBC cân tại O.