K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

A B C I K H D M N

Gọi D là giao của BI và AC. kẻ CH vuông góc với BI căt AB tại K   ; H thuộc BI

=> Tam giác ADB đồng dạng với HDC (góc ADB = HDC do đối đỉnh; góc BAD = CHD = 90o)

=> góc ABD = HCD 

Mà  ABD = góc ABC / 2 => Góc HCD = góc ABC / 2

Ta có: Góc HCI = Góc HCD + DCI = ABC / 2 + ACB /2 = (ABC + ACB)/ 2 = 90o/2 = 45o (góc ABC + ACB = 90o do tam giác ABC vuông tại A)

Ta có Tam giác HCI vuông tại H; góc HCI = 45o => tam giác HCI cân tại H => IH = HC

Áp dung ĐL Pi ta go trong tam giác HIC có: 2.IH2 = CI2 = 10 => IH = HC = \(\sqrt{5}\)

=> BH = BI + IH = 2.\(\sqrt{5}\) 

Áp dụng ĐL Pi ta go trong tam giác vuông BHC có: BC = \(\sqrt{BH^2+CH^2}=\sqrt{\left(2\sqrt{5}\right)^2+\left(\sqrt{5}\right)^2}=5\)

Kẻ IM; IN lần lượt vuông góc với BC; AB

Áp dụng công  thức tính diện tích tam giác trong tam giác BIC => IB. CH = IM. BC

=> IM = IB. CH : BC = \(\sqrt{5}\)\(\sqrt{5}\) : 5 = 1 cm

+) Tam giác AIN vuông tại N có góc NAI = 450 (do AI là p/g của góc BAC) => tam giác AIN cân tại N => AN = NI 

Mà NI = MI (do NI: MI là khoảng cách t ừ I xuống AB ; BC mà BI là p/ g của góc ABC)

=> AN = IM = 1 cm

Áp dụng ĐL pI ta go trong tam giác vuông IBM có: BM = \(\sqrt{IB^2-IM^2}=\sqrt{5-1}=2\) cm

ta có: BM = BN (do tam giác IBN = IBM)

=> BN = 2 cm

Vậy AB = BN + NA = 2 + 1 = 3 cm

9 tháng 7 2015

m = 1 thì \(\sqrt{44+1+1}=\sqrt{46}\)

Không phải số nguyên 

9 tháng 7 2015

Đề sai: Ví dụ m = 1 => B = \(\sqrt{46}\) không là số nguyên

Sửa đề: B = \(\sqrt{444...4+444...4+1}\)

B2 = 444....4 + 444....4 + 1 

Đặt k = 111...1 (m chữ số 1 ) => 9k = 999..9 (m chữ số 9 ) = 10- 1 => 10 = 9k + 1

Ta có : 999...9 (2m chữ số 9 ) = 9 x 111....1 (2m chữ số ) = 102m - 1

=> 111..1 (2m chữ số 1) = \(\frac{10^{2m}-1}{9}\)=> 444...4 (2m chữ số 4 ) =  \(\frac{4.\left(10^{2m}-1\right)}{9}=\frac{4.\left(\left(9k+1\right)^2-1\right)}{9}=\frac{4}{9}.\left(81k^2+18k\right)=36k^2+8k\)

Ta có: B2 = 36k2 + 8k + 4.k + 1 = 36k2 +  12 k + 1 = (6k + 1)2 => B = 6k + 1 là số nguyên => đpcm

9 tháng 7 2015

\(\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x-4\right)=\left(x^2-2x-3\right)\left(x^2-2x-8\right)\)

Đặt \(x^2-2x-3=t\)

\(\text{pt thành }t\left(t-5\right)=36\Leftrightarrow t^2-5t-36=0\Leftrightarrow t=9\text{ hoặc }t=-4\)

\(+t=9\Rightarrow x^2-2x-3=9\Leftrightarrow x^2-2x-12=0\Leftrightarrow x=1+\sqrt{13}\text{ hoặc }x=1-\sqrt{13}\)

\(+t=-4\Rightarrow x^2-2x-3=-4\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy ....