a, Cho \(a^2+b^2+c^2+3=2.\left(a+b+c\right)\) C/m\(a=b=c=1\)
b, phân tích \(x^2+7x+12\)
\(x^{^4}+4\)
(a+1).(a+2).(a+3).(a+4)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+3\right)\left(x-3\right)+x\left(3-x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-3\right)-x\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+3-x\right)=0\)
\(\Rightarrow3\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
\(b,x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
bài này trong SGK hay là SBT cũng có dạng tương tự hay sao ấy
a) \(2x^2\left\{x^2+5x+6\right\}\)=\(2x^4+10x^3+12x^2\)
b) \(15x^2y^4:10x^2y\)=\(\frac{3}{2}y^3\)
c) \(\left\{16x^3y^2+20x^2y^3-8xy\right\}:4xy\)=\(4x^2y+5xy^2-2\)
\(A=3a^2+27b^2+5c^2-18ab-30c-237\)
\(=\left(3a^2-18ab+27b^2\right)+\left(5c^2-30c+45\right)-282\)
\(=3\left(a-3b\right)^2+5\left(c-3\right)^2-282\ge-282\)
Vậy GTNN là - 282 đạt được khi \(\hept{\begin{cases}a=3b\\c=3\end{cases}}\)
mún p là nhỏ nhất thì 1+a^2 phải là nhỏ nhất và 4a cũng phải là nhỏ nhất
\(\Rightarrow a=0\)
\(\Rightarrow p=\frac{3-4a}{1+a^2}=\frac{3-4.0}{1+0^2}=\frac{3}{1}=3\)
vậy p=3
\(A=\frac{x^2-3}{\left(x-2\right)^2}=\frac{-3x^2+12x-12+4x^2-12x+9}{\left(x-2\right)^2}\)
\(=-3+\frac{4x^2-12x+9}{\left(x-2\right)^2}=-3+\frac{\left(2x-3\right)^2}{\left(x-2\right)^2}\ge-3\)
Vậy GTNN là - 3 đạt được khi x = 1,5
a.) a^2+b^2+c^2+3=2(a+b+c)
a^2-2a+1+b^2-2b+1+c^2-2c+1=0
(a-1)^2+(b-1)^2+(c-1)^2=0
suy ra (a-1)^2=0 (b-1)^2=0 (c-1)^2=0
vậy a=b=c=1
b.) x^2+7x+12
=x^2+4x+3x+12
=x(x+4)+3(x+4)
=(x+4)(x+3)
x^4+4
=x^4+4x^2+4-4x^2
=(x^2+2)^2-4x^2
=(x^2+2-2x)(x^2+2+2x)
(a+1)(a+2)(a+3)(a+4)+1
=(a+1)(a+4)(a+2)(a+3)+1
=(a^2+5a+4)(a^2+5a+6)+1
đặt a^2+5a+4=x
ta có x(x+2)+1
=x^2+2x+1
=(x+1)^2
=(x^2+5x+4+1)^2
=(x^2+5x+5)^2
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)
\(\Leftrightarrow a=b=c=1\)
b)
\(=\left(x^2+3x\right)+\left(4x+12\right)\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
\(=\left(a^2+5a+5-1\right)\left(a^2+5a+5+1\right)+1\)
\(=\left(a^2+5a+5\right)^2-1+1\)
\(=\left(a^2+5a+5\right)^2\)