Cho (P) :y= -x^2 phần 3
y= 2x phần 3 - 1 (d)
hỏi: gọi A và B là trung điểm của (P) và (d). tìm tọa độ trung điểm AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có tận cùng là 3 khi nâng lên lũy thừa mũ 4n (n \(\in\) N) có tận cùng là 1.
Ta có \(3^{50}+1=3^{4.12+2}+1=3^{4.12}.3^2+1=\left(...1\right).9+1=\left(...9\right)+1=\left(...0\right)\)có tận cùng là 0 nên có thể là tích cảu hai số tự nhiên liên tiếp, trong đó có 1 số có tận cùng là 0.
Thay \(a=\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}}\)để phân biệt a và x.
\(a^3=4+\sqrt{80}+4-\sqrt{80}+3\sqrt[3]{\left(4+\sqrt{80}\right)\left(4-\sqrt{80}\right)}\left(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}}\right)\)
\(\Rightarrow a^3=8+3\sqrt[3]{4^2-80^2}.a\)
\(\Leftrightarrow a^3+12a-8=0\)
Do đó, a là một nghiệm của pt \(x^3+12x-8=0\)
ĐK: \(x^3+3x^2-3x+1\ge0\)
\(pt\Leftrightarrow\sqrt[3]{9x^2-15x+9}-\left(2-x\right)+\sqrt{x^3+3x^2-3x+1}=0\)
\(\Leftrightarrow\frac{9x^2-15x+9-\left(2-x\right)^3}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)
\(\left(A=\sqrt[3]{9x^2-15x+9};\text{ }B=2-x\right)\)\(\text{(}A^2+AB+B^2=\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}>0\text{)}\)
\(\Leftrightarrow\frac{x^3+3x^2-3x+1}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)
\(\Leftrightarrow\sqrt{x^3+3x^2-3x+1}\left(\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1\right)=0\)
\(\Leftrightarrow x^3+3x^2-3x+1=0\text{ (do }\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1>0\text{)}\)
\(\Leftrightarrow\left(x+1+\sqrt[3]{2}+\sqrt[3]{4}\right)\left[x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1\right]=0\)
\(\Leftrightarrow x+1+\sqrt[3]{2}+\sqrt[3]{4}=0\text{ (}pt\text{ }x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1=0\text{ vô nghiệm do }\Delta
\(\sqrt{2-\sqrt{3}}=\frac{\sqrt{2}\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{2.\left(2-\sqrt{3}\right)}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{3-2\sqrt{3}.1+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{\sqrt{2}\sqrt{3}-\sqrt{2}}{2}\)
\(=\frac{\sqrt{6}-\sqrt{2}}{2}\)