Cho a và b là các số thực thỏa mãn a2 + b2 + ab = 7. Tìm GTLN của biểu thức P = 2( a + b ) - ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=1 vào (d), ta được:
\(1\left(m-3\right)-m+4=1\)
=>m-3-m+4=1
=>1=1(luôn đúng)
Vậy: (d) luôn đi qua A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=\left(m-3\right)x-m+4\)
=>\(x^2-\left(m-3\right)x+m-4=0\)(1)
\(\text{Δ}=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(m-4\right)\)
\(=m^2-6m+9-4m+16=m^2-10m+25=\left(m-5\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì Δ>0
=>\(\left(m-5\right)^2>0\)
=>\(m-5\ne0\)
=>\(m\ne5\)
Khi m<>5 thì phương trình (1) sẽ có 2 nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{m-3-\sqrt{\left(m-5\right)^2}}{2}=\dfrac{m-3-\left(m-5\right)}{2}=\dfrac{m-3-m+5}{2}=1\\x=\dfrac{m-3+\left(m-5\right)}{2}=\dfrac{2m-8}{2}=m-4\end{matrix}\right.\)
Để x1,x2 là độ dài 2 cạnh của một tam giác vuông cân thì m-4=1
=>m=5(loại)
Gọi số dãy ghế ban đầu là \(x\left(x\inℕ^∗,x\le238\right)\) thì số ghế mỗi dãy là \(\dfrac{238}{x}\) \(\Rightarrow238⋮x\) \(\Rightarrow x\in\left\{1,2,7,14,17,34,119,238\right\}\)
Theo đề bài, ta có:
\(\left(x+3\right)\left(\dfrac{238}{x}-3\right)=238\)
\(\Leftrightarrow238-3x+\dfrac{714}{x}-9=238\)
\(\Leftrightarrow3x-\dfrac{714}{x}+9=0\)
\(\Leftrightarrow x^2+3x-238=0\)
\(\Leftrightarrow\left(x+17\right)\left(x-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-17\left(loại\right)\\x=14\left(nhận\right)\end{matrix}\right.\)
Vậy ban đầu phòng họp được chia làm 14 dãy ghế.
Ba phần tư giá niêm yết là:
\(300\text{ }000.\dfrac{3}{4}=225\text{ }000\) (đồng)
Giá gốc của chiếc áo là:
\(225\text{ }000:\left(100\%+25\%\right)=180\text{ }000\) (đồng)
Gọi x (đồng) là giá niêm yết để cửa hàng lãi 40%, ta có:
\(\dfrac{x-180\text{ }000}{180\text{ }000}.100\%=40\%\)
\(\Leftrightarrow x-180\text{ }000=72\text{ }000\)
\(\Leftrightarrow x=252\text{ }000\) (đồng)
Giải:
Giá chiếc áo nếu chỉ bán bằng \(\dfrac{3}{4}\) giá niêm yết là:
300 000 x \(\dfrac{3}{4}\) = 225 000 (đồng)
225 000 đồng ứng với:
100% + 25% = 125% (giá gốc)
Giá gốc của chiếc áo là:
225 000 : 125 x 100 = 180 000 (đồng)
Để lãi 40% giá gốc thì cần bán chiếc áo với giá là:
180 000 x (100% + 40%) = 252 000 (đồng)
Kết luận:...
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)
Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
Do \(x_2\) là nghiệm của pt nên: \(x_2^2-mx_2+m-2=0\)
\(\Rightarrow x_2^2=mx_2-\left(m-2\right)\)
\(\Rightarrow x_2^3=mx_2^2-\left(m-2\right)x_2\)
Thay vào bài toán:
\(mx_1^2+mx_2^2-\left(m-2\right)x_2+\left(m-2\right)x_2=3\)
\(\Leftrightarrow m\left(x_1^2+x_2^2\right)=3\)
\(\Leftrightarrow m\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=3\)
\(\Leftrightarrow m\left(m^2-2\left(m-2\right)\right)=3\)
\(\Leftrightarrow m^3-2m^2+4m-3=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2-m+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m^2-m+3=0\left(vn\right)\end{matrix}\right.\)
Do I là trung điểm MN \(\Rightarrow OI\perp MN\) \(\Rightarrow\widehat{OIA}=90^0\)
Do AB, AC là các tiếp tuyến \(\Rightarrow\widehat{OBA}=\widehat{OCA}=90^0\)
\(\Rightarrow I,B,C\) cùng nhìn OA dưới 1 góc vuông nên 5 điểm O, I, B, A, C cùng thuộc 1 đường tròn đường kính OA
Theo t/c 2 tiếp tuyến cắt nhau ta có: \(AB=AC\)
\(\Rightarrow\widehat{BIA}=\widehat{CIA}\) (2 góc nt chắn 2 cung bằng nhau của đường trònđường kính OA)
\(\Rightarrow IA\) là phân giác của BIC
\(P=2\left(a+b\right)-ab-7+7=2\left(a+b\right)-ab-\left(a^2+b^2+ab\right)+7\)
\(=2\left(a+b\right)-\left(a^2+2ab+b^2\right)+7\)
\(=2\left(a+b\right)-\left(a+b\right)^2+7\)
\(=8-\left(a+b-1\right)^2\le8\)
\(P_{max}=8\) khi \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2+ab=7\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(-2;3\right);\left(3;-2\right)\)