B=(2x/x-3+x/x+3+2x2+3x+1/9-x2) : x-1/x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+3x+5\right)=0\)
mà \(x^2+3x+5=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)
nên x-2=0
=>x=2
\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
=>a=2; b=6
a+b=2+6=8
\(-5x^3+xy^2z^3\) có bậc là \(MAX\left(3;1+2+3\right)=1+2+3=6\)
a) Ta có: \(a^{2k}=5\)
\(P=2a^{6k}-4=2\cdot a^{3\cdot2k}-4=2\cdot\left(a^{2k}\right)^3-4\)
\(=2\cdot5^3-4=2\cdot125-4=250-4=246\)
b) Ta có: \(a^{3k}=-5\)
\(Q=2a^{6k}-4=2\cdot a^{3k\cdot2}-4=2\cdot\left(a^{3k}\right)^2-4\\ =2\cdot\left(-5\right)^2-4=2\cdot25-4=50-4=46\)
\(\left(2x^2z^2\right)^3+\left(-3xy^3\right)^2=0\)
=>\(8x^6z^6+9x^2y^6=0\)
=>\(x^2\left(8x^4z^6+9y^6\right)=0\)
=>\(\left\{{}\begin{matrix}x^2=0\\8x^4z^6+9y^6=0\end{matrix}\right.\)
=>x=y=0
9:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
\(P=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}=\dfrac{x-1}{2}\)
b: Khi x=2 thì \(P=\dfrac{2-1}{2}=\dfrac{1}{2}\)
c: \(S=P\cdot\dfrac{2}{x-2}=\dfrac{x-1}{2}\cdot\dfrac{2}{x-2}=\dfrac{x-1}{x-2}=\dfrac{x-2+1}{x-2}=1+\dfrac{1}{x-2}\)
Để S là số nguyên thì \(x-2\in\left\{1;-1\right\}\)
=>\(x\in\left\{3;1\right\}\)
8)
a) \(A=1-\dfrac{x}{1-\dfrac{x}{x+1}}\left(x\ne-1\right)\)
\(=1-\dfrac{x}{\dfrac{x+1-x}{x+1}}=1-\dfrac{x}{\dfrac{1}{x+1}}=1-x\left(x+1\right)=-x^2-x+1\)
b) \(B=\dfrac{\dfrac{x}{y}+\dfrac{y}{x}}{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}}=\dfrac{\dfrac{x^2}{xy}+\dfrac{y^2}{xy}}{\dfrac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)}}\left(x\ne\pm y;x\ne0;y\ne0\right)\)
\(=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x+y\right)\left(x-y\right)}}=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{2\left(x^2+y^2\right)}{x^2-y^2}}\)
\(=\dfrac{x^2+y^2}{xy}\cdot\dfrac{x^2-y^2}{2\left(x^2+y^2\right)}=\dfrac{x^2-y^2}{2xy}\)
10:
a: Thời gian dự định là \(\dfrac{60}{x}\left(giờ\right)\)
b: Thời gian đi nửa quãng đường đầu tiên là: \(\dfrac{60}{2}:\left(x+10\right)=\dfrac{30}{x+10}\left(giờ\right)\)
Thời gian đi nửa quãng đường còn lại là:
\(\dfrac{60-30}{x-6}=\dfrac{30}{x-6}\left(giờ\right)\)
c: Ô tô đến B đúng giờ nên ta có: \(\dfrac{30}{x+10}+\dfrac{30}{x-6}=\dfrac{60}{x}\)
=>\(\dfrac{1}{x+10}+\dfrac{1}{x-6}=\dfrac{2}{x}\)
=>\(\dfrac{x-6+x+10}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)
=>\(\dfrac{2x+4}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)
=>\(\dfrac{x+2}{x^2+4x-60}=\dfrac{1}{x}\)
=>\(x\left(x+2\right)=x^2+4x-60\)
=>\(x^2+2x=x^2+4x-60\)
=>-2x=-60
=>x=30
Vậy: Vận tốc dự định của ô tô là 30km/h
Bài 6:
a: \(A=\dfrac{x-1}{x}-\dfrac{x+1}{x^2-x}+\dfrac{3\left(x-1\right)}{x^2-2x+1}\)
\(=\dfrac{x-1}{x}-\dfrac{x+1}{x\left(x-1\right)}+\dfrac{3}{x-1}\)
\(=\dfrac{\left(x-1\right)\left(x-1\right)-x-1+3x}{\left(x-1\right)\cdot x}\)
\(=\dfrac{x^2-2x+1+2x-1}{x\left(x-1\right)}=\dfrac{x^2}{x\left(x-1\right)}=\dfrac{x}{x-1}\)
b: \(B=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\)
ĐKXĐ: \(x\ne-3;x\ne3\)
\(\left(\dfrac{2x}{x-3}+\dfrac{x}{x+3}+\dfrac{2x^2+3x+1}{9-x^2}\right):\dfrac{x-1}{x+3}\)
\(=\left(\dfrac{2x}{x-3}+\dfrac{x}{x+3}-\dfrac{2x^2+3x+1}{x^2-9}\right):\dfrac{x-1}{x+3}\)
\(=\dfrac{2x\left(x+3\right)+x\left(x-3\right)-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-1}{x+3}\)
\(=\dfrac{2x^2+6x+x^2-3x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x-1}\)
\(=\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x-1}\)
\(=\dfrac{x+1}{x-3}\)
Mình sửa cho câu trả lời bạn Kiều Vũ Linh:
\(ĐKXĐ:x\ne\left\{3;-3;1\right\}\)
Còn lại đúng rồi bạn nhé.