K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

link: doctailieu.com/dap-an-bai-5-trang-79-sgk-dai-so-lop-10

27 tháng 6 2019

1,\(x^2-2y^2-xy=0\)

<=> \(\left(x-2y\right)\left(x+y\right)=0\)

<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

Sau đó bạn thế vào PT dưới rồi tính 

27 tháng 6 2019

3.  ĐKXĐ  \(x\le1\)\(x+2y+3\ge0\)

.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)

<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)

<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)

Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\)\(x\le1\)nên \(-y^2+x+2y-4< 0\)

=> \(x=2y\)

Thế vào Pt còn lại ta được

\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)

<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)

<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )

Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)

26 tháng 6 2019

Nếu a,b,c dương thì bất đẳng thức trên sai

26 tháng 6 2019

Sai đề thì phải , coi lại giùm mình nhé :

Đặt \(\sqrt[3]{a}=x;\)\(\sqrt[3]{b}=y;\)\(\sqrt[3]{c}=z\)\(\left(a,b,c>0\right)\)

Ta cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt[3]{3.\frac{1}{xyz}}\)

Và \(x+y+z\ge\sqrt[3]{3xyz}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\sqrt[3]{3.\frac{1}{abc}}.\sqrt[3]{3abc}=9\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)

Vậy \(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\ge\frac{9}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\)\(\left(đpcm\right)\)

25 tháng 6 2019

thiếu đề 

25 tháng 6 2019

thiếu

25 tháng 6 2019

x-6 \(\ge0\)và x2 -x -20 > 0

\(\Leftrightarrow x>6\)và  ( x - 5 ) ( x + 4 )  >  0 

X>6,  ,  x  < -4  ,và x > 5   cuối cùng chọn x > 6  thì hàm số trên đc xác định..Chúc bạn zui zẻ nha.

25 tháng 6 2019

ICES là trung tâm ngoại ngữ dành cho thiếu nhi.

27 tháng 6 2019

Trường Ngoại Ngữ ICES


ICES là một trung tâm Anh ngữ có tên tuổi tại quận 7. Trung tâm ICES có nhiều khóa học đa dạng, nhất là các khóa tập trung phát triển nền tảng Anh ngữ của thiếu nhi và thiếu niên. Trung tâm anh ngữ ICES thường xuyên khai giảng các khóa học tiếng anh thiếu nhi và tiếng anh thiếu niên đó bạn @ThaoGemChu

Trung tâm ngoại ngữ ICES có địa chỉ tại số 24 Đường 37, Khu Dân Cư Tân Qui Đông, Phường Tân Phong, Quận 7, Thành phố Hồ Chí Minh, Việt Nam.

Tel: 091.333.5202 - 091.333.5203 

25 tháng 6 2019

B = 1/21 + 1/22 + ... + 1/50 > 1/60 + 1/60 + ... + 1/60 (30 số hạng)

=> B > 30/60 = 1/2

Mà 1/2 > 39/40

=> B > A

25 tháng 6 2019

\(B=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{3}{5}=\frac{24}{40}< \frac{39}{40}=A\)

\(\Rightarrow A>B\)

B D C E A Q H

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm