Tìm GTNN của M= giá trị tuyệt đối của x-5 cộng giá trị tuyệt đối của x-6 công giá trị tuyệt đối của x+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình nháp thôi em .
Ta có : \(\Delta ABC\) cân tại A
\(\Rightarrow\) góc ABC \(=\) góc ACB
Ta có : D là trung điểm của BC
\(\Rightarrow DB=DC\)
Xét \(\Delta BDE\) và \(\Delta CDF\) lần lượt vuông tại E và F có :
góc ABC \(=\) góc ACB (cmt)
\(DB=DC\left(cmt\right)\)
Do đó : \(\Delta BDE=\Delta CDF\left(ch-gn\right)\)
\(\Rightarrow DE=DF\)
\(\Rightarrow\Delta DEF\) cân tại D
\(\cdot\) `\text {dnammv}`
`7,`
`a,`
`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)
`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`
`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`
`=-3x^5+9x^4+6x-1`
`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`
`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`
`= 3x^5-9x^4+3x-5`
`b,`
`H(x)= N(x)+ M(x)`
`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`
`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`
`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`
`= 9x-6`
`G(x)=M(x)-N(x)`
`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`
`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`
`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`
`= -6x^5+18x^4+3x+4`
`c,`
`H(x)=9x-6`
Hệ số cao nhất: `9`
Hệ số tự do: `-6`
`G(x)= -6x^5+18x^4+3x+4`
Hệ số cao nhất: `-6`
Hệ số tự do: `4`
`d,`
`H(1)=9*1-6=9-6=3`
`H(-1)=9*(-1)-6=-9-6=-15`
`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`
`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`
`H(x)=9x-6=0`
`-> 9x=0+6`
`-> 9x=6`
`-> x= 6 \div 9`
`-> x=`\(\dfrac{2}{3}\)
Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)
Vì y tỉ lệ nghịch với \(x\) nên hệ số tỉ lệ là 2 \(\times\) \(\dfrac{5}{2}\) = 5
Với \(x\) = 2 ⇒y = 5 : 2 = \(\dfrac{5}{2}\)
Với \(x\) = -5 ⇒ y = 5 :( -5) = -1
b, với y = 10 ⇒ \(x\) = 5 : 10 = \(\dfrac{1}{2}\)
Với y = -3 ⇒ \(x\) = 5: ( -3)= - \(\dfrac{5}{3}\)
Bài 4:
a. Xét tam giác $ABM$ và $ACM$ có:
$AM$ chung
$AB=AC$
$BM=CM=\frac{BC}{2}$
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
$\Rightarrow \widehat{AMB}=\widehat{AMC}$
Mà $\widehat{AMB}+\widehat{AMC}=180^0$
$\Rightarrow \widehat{AMB}=\widehat{AMC}=90^0$
$\Rightarrow AM\perp BC$
b.
$BM=BC:2=\frac{32}{2}=16$ (cm)
Vì $AM\perp BC$ (cmt) nên tam giác $ABM$ vuông tại $M$
Theo định lý Pitago:
$AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=30$ (cm)
mong các bạn trả lời nhanh