K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2023

Xét hiệu \(x-y=\dfrac{m}{m}-\dfrac{m^2}{n^2}=\dfrac{mn^2-m^3}{mn^2}\)

Mà m > n nên \(mn^2< m^3\), suy ra x - y < 0 hay x < y

1 tháng 6 2023

Chuyển từ số tự nhiên sang phân số thì em chỉ cần viết dưới dạng phân số có tử số là số tự nhiên đó còn mẫu số là 1

7 tháng 6 2023

phân số có dạng  \(\dfrac{a}{b}\) 

a là số bị chia

b là số chia   

1 tháng 6 2023

 Do \(x_1,y_1\) lần lượt là các nghiệm của \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) nên ta có \(ax_1+b=cy_1+d=0\) (*)

 Mặt khác, \(ad=bc\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\). Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\) thì suy ra \(a=kb;c=kd\). Thay vào (*), ta có \(kbx_1+b=kdy_1+d=0\) \(\Leftrightarrow b\left(kx_1+1\right)=d\left(ky_1+1\right)=0\) \(\Leftrightarrow kx_1+1=ky_1+1=0\) (do \(b,d\ne0\)\(\Leftrightarrow x_1=y_1\) (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Bạn nên viết đề bằng công toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn. Đọc đề thế này khó dịch.

31 tháng 5 2023

\(\dfrac{27}{23}\) + \(\dfrac{5}{21}\) - \(\dfrac{4}{23}\) + \(\dfrac{6}{21}\) + \(\dfrac{1}{2}\)

= (\(\dfrac{27}{23}\) - \(\dfrac{4}{23}\)) + (\(\dfrac{5}{21}\) + \(\dfrac{6}{21}\)) + \(\dfrac{1}{2}\)

\(\dfrac{23}{23}\) + \(\dfrac{11}{21}\) + \(\dfrac{1}{2}\)

= 1 + \(\dfrac{11}{21}\) + \(\dfrac{1}{2}\)

\(\dfrac{42}{42}\) + \(\dfrac{22}{42}\) + \(\dfrac{21}{42}\)

\(\dfrac{85}{42}\)

 

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Bài này có đúng là của lớp 7 không bạn?

29 tháng 5 2023

A                    =  \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) 

\(\times\) \(xyz\)         =              \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)

\(\times\) \(xyz\) - A    =     \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\) 

A\(\times\)\(xyz\) - 1)  =    \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)

A                   =  (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\)   - \(xy^2z^3\)) : (\(xyz\) - 1)

Thay \(x\) = -1; \(y\) = -1; \(z\) = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

 

29 tháng 5 2023

A                    =  ��2�3xy2z3 + �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016 

×× ���xyz         =              �2�3�4x2y3z4+...+�2014�2015�2016x2014y2015z2016 + �2015�2016�2017x2015y2016z2017

×× ���xyz - A    =     �2015x2015�2016y2016�2017z2017 - ��2�3xy2z3 

A××���xyz - 1)  =    �2015x2015�2016�2017y2016z2017 - ��2�3xy2z3

A                   =  (�2015x2015 �2016y2016 �2017z2017   - ��2�3xy2z3) : (���xyz - 1)

Thay x = -1; y = -1; z = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

Nhớ tick nha 

29 tháng 5 2023

28 tháng 5 2023

    A = 13 + 23 + 33 + 43 +...+ 1003

   Ta có:   B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2

   Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)

 Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2

Ta cần chứng minh B  đúng với n = k + 1. 

⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2 

Ta có:

B = 13 + 23 + 33 +....+ k3 + (k+1)3

B = (1+2+3+...+k)2 + (k + 1)3

B = {(k +1)k:2}2 + (k+1)3 = (k+1)2\(\dfrac{k^2}{4}\) + k + 1} =(k+1)2(k2+4k+4)2: 4

B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4

B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2

Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2

⇒B = (1+2+3+...+ k+1)2 (đpcm)

Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2 

Áp dụng công thức trên ta có:

A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2

C = 1 + 2 + 3 + 4 +...+100

Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1

Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100

Tổng dãy số trên là: C = (100 +1)\(\times\) 100  : 2 = 5050

A = 50502

 

 

 

 

28 tháng 5 2023

  A = 13 + 23 + 33 + 43 +...+ 1003

   Ta có:   B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2

   Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)

 Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2

Ta cần chứng minh B  đúng với n = k + 1. 

⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2 

Ta có:

B = 13 + 23 + 33 +....+ k3 + (k+1)3

B = (1+2+3+...+k)2 + (k + 1)3

B = {(k +1)k:2}2 + (k+1)3 = (k+1)2�244k2 + k + 1} =(k+1)2(k2+4k+4)2: 4

B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4

B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2

Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2

⇒B = (1+2+3+...+ k+1)2 (đpcm)

Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2 

Áp dụng công thức trên ta có:

A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2

C = 1 + 2 + 3 + 4 +...+100

Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1

Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100

Tổng dãy số trên là: C = (100 +1)×× 100  : 2 = 5050

A = 50502

HT!

27 tháng 5 2023

Câu 11 

Giá trị của biểu thức:A =  \(xy-2x^2y\) + 3\(xy\) + 2y\(x^2\) tại \(x\) = 1; \(y\) = \(-\dfrac{1}{2}\)

A = (\(xy\) + 3\(xy\)) - (2\(x^2y\) - 2\(yx^2\)

A = 4\(xy\) 

Thay \(x\) = 1; y = - \(\dfrac{1}{2}\) vào biểu thức A ta có:  

A = 4 \(\times\)\(\times\) ( - \(\dfrac{1}{2}\))

A = -2

 

27 tháng 5 2023

Câu 9: Diện tích hình vuông là: \(x\) \(\times\) \(x\) = \(x^2\) (cm2)

           Diện tích hình chữ nhật là: \(x\times y\) = \(xy\) (cm2)

           Biểu thức biểu thị tổng diện tích của hình vuông và hình chữ nhật là:

               C.  \(x^2\) + \(xy\)

Bài 10: Thu gọn đa thức:

   \(xy\) - 2\(x^2\)y + 3\(xy\) + 2y\(x^2\)

= (\(xy\) + 3\(xy\)) - ( 2\(x^2\)y - 2y\(x^2\))

= 4\(xy\) - 0

Chọn C. 4\(xy\)

= 4\(xy\)