K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\)

\(=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^7}\right)\)

\(=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^6}-\dfrac{1}{2^1}-\dfrac{1}{2^2}-...-\dfrac{1}{2^7}\)

\(=1-\dfrac{1}{2^7}\)

\(=\dfrac{127}{128}\)

2 tháng 6

           A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)

     A x 2 =  1  + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)

A x 2 - A = 1 + \(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+\(\dfrac{1}{64}\) - (\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{128}\))

A x (2 - 1) = 1+\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{8}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{32}\)+\(\dfrac{1}{64}\)-\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)-\(\dfrac{1}{8}\)-\(\dfrac{1}{16}\)-\(\dfrac{1}{32}\)-\(\dfrac{1}{64}\)-\(\dfrac{1}{128}\)

A = (1 - \(\dfrac{1}{128}\)) +(\(\dfrac{1}{2}\)-\(\dfrac{1}{2}\)) + (\(\dfrac{1}{4}\) - \(\dfrac{1}{4}\)) +...+(\(\dfrac{1}{64}\) - \(\dfrac{1}{64}\))

A = 1 - \(\dfrac{1}{128}\)

A = \(\dfrac{127}{128}\)

 

2 tháng 6

Ta có: \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2022}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2022}\ge0\forall x,y\)

Mà: \(\left(x-2\right)^4+\left(2y-1\right)^{2022}\le0\)

Do đó: \(\left(x-2\right)^4+\left(2y-1\right)^{2022}=0\)

Khi đó: \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

Thay \(x=2;y=\dfrac{1}{2}\) vào M, ta được:

\(M=21\cdot2\cdot\left(\dfrac{1}{2}\right)^2+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)

\(=25\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)

\(\text{#}Toru\)

2 tháng 6

        (\(x\) - 2)4 + (2y - 1)2022 ≤ 0

Vì: ( \(x-2\))4 ≥ 0 \(\forall\) \(x\); (2y - 1)2022 ≥ 9 \(\forall\) y

   Vậy (\(x-2\))4 + (2y - 1)2022 = 0

    ⇒ \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

     ⇒ \(\left\{{}\begin{matrix}x=2\\2y=1\end{matrix}\right.\)

     ⇒   \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\) (1)

    Thay hệ (1) vào biểu thức M = 21\(xy^2\) + 4\(xy^2\) 

     M = 21.2.\(\dfrac{1}{2^2}\) + 4.2.\(\dfrac{1}{2^2}\)

    M = 2.\(\dfrac{1}{2^2}\).(21 + 4)

   M = \(\dfrac{1}{2}\).25

  M = \(\dfrac{25}{2}\)

   

 

  

2 tháng 6

1.3\(x-1\) + 5.3\(x-1\) = 162

     3\(^{x-1}\).(1 + 5) = 162

    3\(x-1\).6  = 162

   3\(x-1\)      = 162 : 6

  3\(^{x-1}\)         = 27

  3\(^{x-1}\)        = 33

   \(x-1\)    = 3

   \(x\)          = 3 + 1

    \(x\)         = 4 

Vậy \(x=4\) 

2 tháng 6

có nghiệm như nào em nhỉ?

2 tháng 6

100+4003x50-4000

=100+200150-4000

=200250-4000

=196250

4
456
CTVHS
2 tháng 6

@ Bạn lê phương thảo  :Chú ý ghi TK.

AH
Akai Haruma
Giáo viên
2 tháng 6

Lời giải:

$(x+1)+(x+2)+(x+3)+....+(x+99)+(x+100)=5050$

$(x+x+....+x)+(1+2+3+...+100)=5050$
Số lần xuất hiện của $x$: $(100-1):1+1=100$ (lần) 

Suy ra:

$x\times 100+(1+2+...+100)=5050$

$x\times 100+100\times 101:2=5050$

$x\times 100+5050=5050$

$x\times 100=0$

$x=0:100$

$x=0$

Lời giải:

(𝑥+1)+(𝑥+2)+(𝑥+3)+....+(𝑥+99)+(𝑥+100)=5050

(𝑥+𝑥+....+𝑥)+(1+2+3+...+100)=5050
Số lần xuất hiện của 𝑥(100−1):1+1=100 (lần) 

Suy ra:

𝑥×100+(1+2+...+100)=5050

𝑥×100+100×101:2=5050

𝑥×100+5050=5050

𝑥×100=0

𝑥=0:100

𝑥=0

2 tháng 6

Ta thấy:\(\dfrac{16}{18}=\dfrac{32}{36\dfrac{ }{ }}=\dfrac{48}{54}=\dfrac{64}{72}=\dfrac{70}{90}=\dfrac{ }{ }\)

Vậy là có 4 P/s =16/18 có cả tử và mẫu có 2 chữ số