Xác định phó từ trong cụm từ sau “ông đã làm việc chăm chỉ”
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C/m tam giác BAD = tam giác BED
xét tam giác BAD và tam giác BED, ta có
BD chung
BA = BE (gt)
ABD = DBE (BD tia phân giác góc ABC)
=>tam giác BAD = tam giác BED
=>AD=DE( cặp cạnh tương ứng)
b) chứng minh AF = EC
Xét tam giác ADF và tam giác EDC, ta có
AD = DE( cmt )
ADF = EDC( đối đỉnh )
DAF=DEC( = 900)
=>tam giác ADF = tam giác EDC
=>AF = EC ( cặp cạnh tương ứng)
=>ECA=AFE(cặp góc tương ứng )
c) C/M AE // FC
tam giác BEC có
BE = BA ( gt )
=> tam giác BEC cân cại B
=>BEA=BAE
ta có
ED = AD
DF = DC
=>ED+DF=AD+DC
=>EF=AC
xét tam giác ACF và tam giác EFC, ta có
EC = AF (cmt)
CF chung
EF=AC(cmt)
=>tam giác ACF= tam giác EFC
=>EFC=ACF(cặp góc tương ứng)
ta có:
ECA = AFE(cmt)
ACF=EFC(cmt)
=>ECA+ACF=AFE+EFC
=>ECF=AFC
tam giác BCF có
BCF=BFC(cmt)
=>tam giác BCF cân tại B
Ta có
tam giác BEC cân tại B
tam giác BCF cân tại B
=>BEA=BCF=BAE=BFC
mà BEA đồng vị BCF
=> AE//FC
cái câu c mình ko chắc đúng lắm nha.('v')
a \(\perp\) IJ
b \(\perp\) IJ
⇒ a//b (Vì trong cùng một mặt phẳng hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
\({}\)\(\widehat{K_2}\) + \(\widehat{L_1}\)= 1800 (hai góc trong cùng phía có tổng bằng 1800)
\({}\) \(\widehat{K_2}\) = 1800 - 750
\({}\) \(\widehat{K_2}\) = 1050
Các ký hiệu toán bị lỗi hết rồi bạn. Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
Ta có: \(\left\{{}\begin{matrix}\left(x+5\right)^2\ge0\forall x\\\left|x-y+1\right|\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left(x+5\right)^2+\left|x-y+1\right|\ge0\forall x,y\)
\(\Rightarrow-\left[\left(x+5\right)^2+\left|x-y+1\right|\right]\le0\forall x,y\)
\(\Rightarrow-\left(x+5\right)^2-\left|x-y+1\right|\le0\forall x,y\)
\(\Rightarrow P=-\left(x+5\right)^2-\left|x-y+1\right|+2018\le2018\forall x,y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x+5=0\\x-y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\y=x+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-4\end{matrix}\right.\)
Vậy \(Max_P=2018\) khi \(x=-5;y=-4\).
$Toru$
phó từ trong cum từ trên là chăm chỉ nhé
phó từ: đã