Giải các bất phương trình sau:
a) $\dfrac{3x+5}{2}-x\ge 1+\dfrac{x+2}{3}$;
b) $\dfrac{x-2}{3}-x-2\le \dfrac{x-17}{2}$;
c) $\dfrac{2x+1}{3}-\dfrac{x-4}{4}\le \dfrac{3x+1}{6}-\dfrac{x-4}{12}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{3\left(2x+1\right)}{20}+1>\dfrac{3x+52}{10}\)
=>\(\dfrac{6x+3}{20}+\dfrac{20}{20}>\dfrac{6x+104}{20}\)
=>6x+23>6x+104
=>23>104(sai)
vậy: \(x\in\varnothing\)
b: \(\dfrac{4x-1}{2}+\dfrac{6x-19}{6}< =\dfrac{9x-11}{3}\)
=>\(\dfrac{3\left(4x-1\right)+6x-19}{6}< =\dfrac{2\left(9x-11\right)}{6}\)
=>12x-3+6x-19<=18x-22
=>-22<=-22(luôn đúng)
Vậy: \(x\in R\)
a: ĐKXĐ: \(x\notin\left\{1;-1;\dfrac{1}{2}\right\}\)
\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(=\left(\dfrac{-1}{x-1}+\dfrac{2}{x+1}-\dfrac{x-5}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)
\(=\dfrac{-\left(x+1\right)+2\left(x-1\right)-x+5}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x+1}\)
\(=\dfrac{-x-1+2x-2-x+5}{-2x+1}=\dfrac{2}{-2x+1}\)
b: Để A>0 thì \(\dfrac{2}{-2x+1}>0\)
mà 2>0
nên -2x+1>0
=>-2x>-1
=>\(x< \dfrac{1}{2}\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x\ne-1\end{matrix}\right.\)
a: \(x^2-3x+1>2\left(x-1\right)-x\left(3-x\right)\)
=>\(x^2-3x+1>2x-2-3x+x^2\)
=>-3x+1>-x-2
=>-2x>-3
=>\(x< \dfrac{3}{2}\)
b: \(\left(x-1\right)^2+x^2< =\left(x+1\right)^2+\left(x+2\right)^2\)
=>\(x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)
=>-2x+1<=6x+5
=>-7x<=4
=>\(x>=-\dfrac{4}{7}\)
c:
\(\left(x^2+1\right)\left(x-6\right)< =\left(x-2\right)^3\)
=>\(x^3-6x^2+x-6< =x^3-6x^2+12x-8\)
=>x-6<=12x-8
=>-11x<=-8+6=-2
=>\(x>=\dfrac{2}{11}\)
\(\dfrac{x-2}{\sqrt{x}+\sqrt{2}}=\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{\sqrt{x}+\sqrt{2}}=\sqrt{x}-\sqrt{2}\)
\(4x^2-25+\left(2x+5\right)^2=0\\ < =>\left[\left(2x\right)^2-5^2\right]+\left(2x+5\right)^2=0\\ < =>\left(2x+5\right)\left(2x-5\right)+\left(2x+5\right)^2=0\\ < =>\left(2x+5\right)\left(2x-5+2x+5\right)=0\\ < =>4x\left(2x+5\right)=0\\ < =>\left[{}\begin{matrix}4x=0\\2x+5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\2x=-5\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy: ...
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)AC
Xét ΔABC có
CD,BE là các đường cao
CD cắt BE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
\(x^2\left(x-2\right)+3\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x^2+3\right)=0\)
mà \(x^2+3>=3>0\forall x\)
nên x-2=0
=>x=2
a) Ta có:
`m^2>=0` với mọi m
`=>m^2+1/2>=1/2>0` với mọi m
`=>` Bất pt: `(m^2+1/2)x-1<=0` có hệ số `a≠0`
`=>`Bất pt luôn là bất pt bậc nhất 1 ẩn với mọi m
b) Ta có:
`m^2+m+2=(m^2+2*m*1/2+1/4)+7/4`
`=(m+1/2)^2+7/4>=7/4>=0` với mọi m
`=>-(m^2+m+2)<=-7/2<0` với mọi m
`=>-(m^2+m+2)≠0` với mọi m
=> Bất pt `-(m^2+m+2)x<=-m+2024` luôn là bpt bậc nhất 1 ẩn
a.
\(\left\{{}\begin{matrix}S=x_1+x_2=7\\P=x_1x_2=10\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_1;x_2\) là nghiệm:
\(x^2-7x+10=0\)
Trình bày tương tự câu a ta có:
b.
\(x^2-2x-35=0\)
c.
\(x^2+13x+36=0\)
a: \(\dfrac{3x+5}{2}-x>=1+\dfrac{x+2}{3}\)
=>\(\dfrac{3x+5-2x}{2}>=\dfrac{3+x+2}{3}\)
=>\(\dfrac{x+5}{2}-\dfrac{x+5}{3}>=0\)
=>\(\dfrac{3\left(x+5\right)-2\left(x+5\right)}{6}>=0\)
=>\(\dfrac{x+5}{6}>=0\)
=>x+5>=0
=>x>=-5
b: \(\dfrac{x-2}{3}-x-2< =\dfrac{x-17}{2}\)
=>\(\dfrac{2\left(x-2\right)}{6}+\dfrac{6\left(-x-2\right)}{6}< =\dfrac{3\left(x-17\right)}{6}\)
=>\(2\left(x-2\right)+6\left(-x-2\right)< =3\left(x-17\right)\)
=>\(2x-4-6x-12< =3x-51\)
=>-4x-16<=3x-51
=>-7x<=-35
=>x>=5
c: \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}< =\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)
=>\(\dfrac{4\left(2x+1\right)-3\left(x-4\right)}{12}< =\dfrac{2\left(3x+1\right)-x+4}{12}\)
=>4(2x+1)-3(x-4)<=2(3x+1)-x+4
=>8x+4-3x+12<=6x+2-x+4
=>5x+16<=5x+6
=>16<=6(sai)
Vậy: BPT vô nghiệm