Giải bài toán bằng đồng dư thức:
1. Tìm số dư của phép chia:
a) 22024 cho 7
b) 570+750 cho 12
c) 32005+42005 cho 11,13
d) 1044205 cho 7
e) 32003 cho 13
*Sử dụng đồng dư thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(\dfrac{5}{11}\) = \(\dfrac{20}{x}\) = \(\dfrac{-35}{y}\)
\(x\) = 20 : (-\(\dfrac{5}{11}\))
\(x\) = -44
y = - 35 : (- \(\dfrac{5}{11}\))
y = 77
\(110\cdot\left(193+2023\right)+110\cdot\left(-2023\right)+193\cdot90\)
\(=110\cdot\left(193+2023-2023\right)+193\cdot90\)
\(=110\cdot193+193\cdot90\)
\(=193\cdot\left(110+90\right)\)
\(=193\cdot200\)
\(=193\cdot2\cdot100\)
\(=19300\cdot2\)
\(=38600\)
Ta có \(5x^2+y^2=270\Leftrightarrow5x^2=270-y^2< 270\)
\(\Rightarrow x^2< 54\Rightarrow x< 8\)
Do x nguyên tố nên x có thể nhận các giá trị 2, 3, 5, 7
- Với \(x=2\Rightarrow y^2=270-5.2^2=250\) \(\Rightarrow\) ko tồn tại y nguyên thỏa mãn (loại)
- Với \(x=3\Rightarrow y^2=270-5.3^2=225\Rightarrow y=15\) ko phải SNT (loại)
- Với \(x=5\Rightarrow y^2=270-5.5^2=145\) không tồn tại y nguyên t/m (loại)
- Với \(x=7\Rightarrow y^2=270-5.7^2=25\Rightarrow y=5\) (thỏa mãn)
Vậy \(\left(x;y\right)=\left(7;5\right)\)
\(2^{3+x}+2^x=576\)
\(\Rightarrow2^x\cdot2^3+2^x=576\)
\(\Rightarrow2^x\cdot\left(2^3+1\right)=576\)
\(\Rightarrow2^x\cdot\left(8+1\right)=576\)
\(\Rightarrow2^x\cdot9=576\)
\(\Rightarrow2^x=576:9\)
\(\Rightarrow2^x=64\)
\(\Rightarrow2^x=2^6\)
\(\Rightarrow x=6\)
Vậy $x=6$.
53 . 2 - 100 : 4 + 23 . 5
= 106 - 25 + 115
= 106 + (115 - 25)
= 106 + 90
= 196
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9