rút gọn x^2+4x-5/x^2-4x+3:x^2+10x+25/x^2-x-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIẢI:
3x (12x - 4 ) -9x (4x - 3) - 30
=36x2-12x - 36x2+27x - 30
= 15x - 30
a) Ta có N là trung điểm AD
M là trung điểm BC
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow MN//AB\)
Mà \(AB\perp AD\)
\(\Rightarrow MN\perp AD\)(1)
Lại có N là trung điểm AD (2)
Từ (1) và (2) \(\Rightarrow\Delta MAD\)cân tại M ( đpcm )
b) \(\Rightarrow\widehat{MAN}=\widehat{MDN}\)
Mặt khác \(\widehat{MAN}+\widehat{MAB}=\widehat{MDN}+\widehat{MDC}\left(=90^o\right)\)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\left(đpcm\right)\)
1) \(A=\frac{2x+1}{x^2+2}\)
\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-bc-ac\\bc=-ac-ab\\ac=-ab-bc\end{cases}}\)(*)
Thay (*) vào M ta được:
\(M=\frac{1}{a^2+bc-ab-ac}+\frac{1}{b^2+ac-ab-bc}+\frac{1}{c^2+ab-bc-ac}\)
\(=\frac{1}{a\left(a-b\right)-c\left(a-b\right)}+\frac{1}{a\left(c-b\right)-b\left(c-b\right)}+\frac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
\(=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(c-b\right)}-\frac{1}{\left(c-b\right)\left(a-c\right)}\)
\(=\frac{c-b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}-\frac{a-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)
\(=\frac{c-b+a-c-a+b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=0\)
Vậy M = 0
\(\left(\frac{\sqrt{x+10}}{\sqrt{x+5}}\right)^2=\frac{x+10}{x+5}=\frac{x+5+5}{x+5}=1+\frac{5}{x+5}\)
vì x>=0 \(\Rightarrow1+\frac{5}{x+5}< =1+\frac{5}{0+5}=1+1=2\Rightarrow\left(\frac{\sqrt{x+10}}{\sqrt{x+5}}\right)^2< =2\)
\(\Rightarrow\frac{\sqrt{x+10}}{\sqrt{x+5}}< =\sqrt{2}\)
dấu = xảy ra khi x=0
vậy max \(\frac{\sqrt{x+10}}{\sqrt{x+5}}\)là \(\sqrt{2}\)khi x=0
bài 1, bạn tự làm nhé đặt chia đi bạn
bài 2
a,\(\left(x^2-2xy+y^2\right)+2\left(x-y\right)=\left(x-y\right)^2+2\left(x-y\right)=\left(x-y\right)\left(x-y+2\right)\)
\(b,=a^2-2a-5a+10=a\left(a-2\right)-5\left(a-2\right)=\left(a-2\right)\left(a-5\right)\)
Gọi thương của phép chia n cho 11 là x
thì n=11x+4
\(\Leftrightarrow n^2=\left(11x+4\right)^2\)
\(\Leftrightarrow n^2=121x^2+88x+16\)
=> n2 :11 <=>\(121x^2+88x+16:11\)
\(\Leftrightarrow11\left(11x^2+8x+1\right)+5\)
vậy n2 :11 dư 5
b, bạn làm tương tự nhé rồi đặt 13 làm nhân tử chung thì sẽ chia hết cho 13