Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(Q=\frac{a^2+2a+1}{2a^2+\left(1-a\right)^2}+...\)
\(=\frac{a^2+2a+1}{3a^2-2a+1}+...=\frac{1}{3}+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+...\)
\(=1+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+\frac{\frac{8}{3}b+\frac{2}{3}}{3b^2-2b+1}+\frac{\frac{8}{3}c+\frac{2}{3}}{3c^2-2c+1}\)
mà \(3a^2-2a+1=3\left(a-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
=>\(\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}\le\frac{\frac{8}{3}a+\frac{2}{3}}{\frac{2}{3}}=\frac{3}{2}\left(\frac{8}{3}a+\frac{2}{3}\right)=4a+1\)
tương tự mấy cái kia rồi + vào, ta có
\(Q\le1+4\left(a+b+c\right)+3=8\)
dấu = xảy ra <=>a=b=c=1/3
^_^
Other way:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)
Dấu "=" xảy ra khi a=b=c
Chứng minh vế phải này ; phương pháp đại số nha
\(S_{ABC}=\frac{AB.AC}{2}=1\Rightarrow AB.AC=2\)
Theo pytago Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)
BĐT cần cm : \(BC\le\sqrt{2}\left(AB+AC-\sqrt{2}\right)\)
\(\Leftrightarrow BC\le\sqrt{2}\left(AB+AC\right)-2\)
\(\Leftrightarrow\left(BC+2\right)^2\le2\left(AB+AC\right)^2\)
\(\Leftrightarrow BC^2+4BC+4\le2AB^2+2AC^2+4AB.AC\)
\(\Leftrightarrow AB^2+AC^2+4BC+4\le2AB^2+2AC^2+4.2\)( \(AB^2+AC^2=BC^2\)Và\(AB.AC=2\))
\(\Leftrightarrow4BC\le AB^2+AC^2+4\)
\(\Leftrightarrow4BC\le BC^2+4\)
\(\Leftrightarrow-BC^2+4BC-4\le0\)
\(\Leftrightarrow-\left(BC-2\right)^2\le0\)(Luôn đúng)
Vậy bđt đã được chứng minh
vì tam giác ABC vuông tại A =>\(BC^2=AB^2+AC^2\ge2AB.AC=4\) (vì \(S_{ABC}=\frac{AB.AC}{2}\Rightarrow AB.AC=2\) )
\(\Rightarrow BC\ge2\) (ĐPCM)
dấu = xảy ra <=> tam giác ABC vuông cân tại A
^_^
Mượn chỗ nhok chút !
ta có pt
<=>\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2-x+1\right)+2\left(x+1\right)\)
đặt \(\sqrt{x+1}=a;\sqrt{x^2-x+1}=b\)
Ta có PT <=> \(5ab=2a^2+2b^2\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
đến đây thì dex rồi ^_^
Mượn chỗ nhok chút !
Áp dụng bđt svacxơ, ta có
\(M\ge\frac{\left(x^3+y^3+z^3\right)^2}{2\left(x^3+y^3+z^3\right)}=\frac{x^3+y^3+z^3}{2}\)
Áp dụng bài toán \(a^2+b^2+c^2\ge ab+bc+ca\) (dễ dàng chứng minh ) , ta có
\(x^3+y^3+z^3\ge xy\sqrt{xy}+yz\sqrt{yz}+zx\sqrt{zx}=1\)
=> \(M\ge\frac{1}{2}\)
dấu = xảy ra <=> x=y=z=\(\frac{1}{\sqrt[3]{3}}\)
ta có \(\left(x-y\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)cái này các bạn tự CM
\(\left(1-xy\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\left(1-xy\right)^2\le\left(1+x^2\right)^2\left(1+y^2\right)^2\)
\(\Rightarrow\left[\left(x-y\right)\left(1-xy\right)\right]\le\left[\left(1+x^2\right)\left(1+y^2\right)\right]\)cái dấu ngặc vuông là chỉ dấu giá trị tuyệt đối đấy mình ko biết đánh dấu giá trị tuyệt đối
\(\Rightarrow\left[\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\right]\le1\)
\(\Rightarrow-1\le\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\le1\)\(\Rightarrow-1\le A\le1\)
Ta có:
\(3\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)
= \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)\(=a^3+ab^2+ac^2+a^2b+b^3+bc^2+ca^2+b^2c+c^3\)\(-3\left(a^2b+b^2c+c^2a\right)\)
\(=a^3+b^3+c^3+ab^2+bc^2+ca^2-2a^2b-2b^2c-2c^2a\)
\(=\left(a^3-2a^2b+ab^2\right)+\left(b^3-2b^2c+bc^2\right)+\left(c^3-2c^2a+ca^2\right)\)
\(=a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)
Mà \(a,b,c>0\)
\(\Rightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\)
\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Lại có:
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)<đpcm>
bài trên mk làm sai rồi, mong mọi người thông cảm và nghĩ cách khác nha
\(BDT\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)
\(\Leftrightarrow\frac{c-a}{a+b}+\frac{2\left(c-b\right)}{a+b}+\frac{b-a}{a+c}+\frac{2\left(b-c\right)}{a+c}+\frac{a-b}{b+c}+\frac{a-c}{b+c}\ge0\)
\(\Leftrightarrow\left(c-a\right)^2\frac{1}{\left(a+b\right)\left(b+c\right)}+2\left(b-c\right)^2\frac{1}{\left(a+c\right)\left(a+b\right)}+\left(a-b\right)^2\frac{1}{\left(a+c\right)\left(b+c\right)}\ge0\)
BĐT cuối đúng nên ta có ĐPCM
Xảy ra khi \(a=b=c\)
Tại t nháp luôn vào chỗ để gửi trả lời nên khi gửi ko nhìn lại nó hơi tắt. Hết dòng thứ 2, bắt đầu dòng thứ 3:
\(\Leftrightarrow\left(\frac{c-a}{a+b}+\frac{a-c}{b+c}\right)+\left(\frac{2\left(b-c\right)}{a+c}+\frac{2\left(c-b\right)}{a+b}\right)+\left(\frac{a-b}{b+c}+\frac{b-a}{a+c}\right)\ge0\)
\(\Leftrightarrow\left(c-a\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+2\left(b-c\right)\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+\left(a-b\right)\left(\frac{1}{b+c}-\frac{1}{a+c}\right)\ge0\)
\(\Leftrightarrow....\) the last ineq in here !
Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d
Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮3\)
Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\) (1)
Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\) (2)
Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)
Vậy thì ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.