Chứng minh rằng:
x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để A có nghĩa thì \(x^3-3x-2\ne0\)
\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)
\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)
\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)
\(\Rightarrow x\ne1;x\ne-2\)
2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)
\(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)
3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)
\(\Leftrightarrow x^2+2x+1< x+2\)
\(\Leftrightarrow x^2+x< 1\)
\(\Leftrightarrow x.\left(x+1\right)< 1\)
Vậy .....
1. A có nghĩa khi \(x^3-3x-2\ne0\)
\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)
\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)) \(\Leftrightarrow x\ne2\)
2. Ta có :
Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)
=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)
Vậy x<2 thì A<1
Tổng vận tốc hai xe là:
60+40=100(km/giờ)
Sau số thời gian thì hai xe gặp nhau là:
150:100=1,5(giờ)
Đổi : 1,5 giờ =1 giờ 30 phút
Đáp số : 1 giờ 30 phút
Tổng vận tốc 2 xe là : 60 + 40 = 100 (km/giờ)
Thời gian để chúng gặp nhau là : 150 : 100 = 1,5 (giờ) = 1 giờ 30 phút
Gọi giao điểm của AC và BD là O; giao điểm của KI và AF là O'. Tia FI cắt AC tại điểm P.
Xét tứ giác AKFI: FI//AK; KF//AI => Tứ giác AKFI là hình bình hành.
Do KI cắt AF tại O' => O' là trung điểm của AF.
Xét \(\Delta\)AFC: O' là trung điểm của AF; E là trung điểm của FC
=> O'E là đường trung bình của \(\Delta\)AFC => O'E//AC và O'E=1/2.AC
Ta thấy tứ giác ABCD là hình bình hành; AC giao BD tại O => OA=OC=1/2.AC
Do đó: O'E=OA. Mà O'E//OA (O'E//AC) nên tứ giác AO'EO là hình bình hành.
=> AO' // OE hay AF//BD => ^KAF=^ADB (Đồng vị)
Xét \(\Delta\)AKF và \(\Delta\)DAB: ^KAF=^ADB; ^AKF=^DAB (Vì KF//AB)
=> \(\Delta\)AKF ~ \(\Delta\)DAB (g.g) => \(\frac{AK}{DA}=\frac{KF}{AB}\).
Lại có KF=AI và AB=DC => \(\frac{AK}{AD}=\frac{AI}{DC}\)=> \(\Delta\)KAI ~ \(\Delta\)ADC (c.g.c)
=> ^AIK=^DCA. Mà ^DCA=^BAC nên ^AIK=^BAC => IK // AC (*)
Lại thấy: FI//AK => IP//AK; KI // AC (cmt) => KI//AP.
Từ đó suy ra: Tứ giác APIK là hình bình hành => IP=AK. Mà FI=AK.
=> FI=IP => I là trung điểm của FP.
Xét \(\Delta\)PFC: I là trung điểm FP; E là trung điểm của FC => IE//PC hay IE//AC (**)
Tư (*) và (**) => I;E;K là 3 điểm thẳng hàng (Tiên đề Ơ-clit) (đpcm).
Nhận thấy :
\(3x^2-3x+1=3\left(x^2-x\right)+1=3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}+1=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)
Nên phương trình trên
<=> \(3x^2-3x+1=1-2x\)
<=> \(3x^2-x=0\)
<=> \(x\left(3x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
Vậy .................
Để phương trình trên có nghiệm thì \(1-2x\ge0\Leftrightarrow x\le\frac{1}{2}\)
Ta có: \(3x^2-3x+1=3\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}>0\)
Vậy nên \(\left|3x^2-3x+1\right|=3x^2-3x+1\)
Phương trình trở thành:
\(3x^2-3x+1=1-2x\)
\(\Leftrightarrow3x^2-x=0\Leftrightarrow x\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\left(tmđk\right)\)
Vậy phương trình có 2 nghiệm x = 0 hoặc \(x=\frac{1}{3}.\)
Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé
Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)
Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)
Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)
<=> \(ab\le1\)
<=> \(1-ab\ge0\)
Suy ra P = 2018 - 2018ab = 2018(1 - ab) \(\ge0\)
\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\) với \(a,b\in R\)
nếu \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\) thì \(P=2018>0\)
nếu \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\) thì xảy ra 2 trường hợp như sau
\(TH1\)\(a,b\) trái dấu \(\Rightarrow P>0\)
\(TH2\) \(a,b\) cùng dấu
vì \(2.a^{2018}.b^{2018}>0\forall a,b\)
\(\Rightarrow a^{2017}+b^{2017}>0\) để 2 đẳng thức tồn tại dấu \("="\)
\(\Rightarrow a,b>0\) ( cùng dương)
có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)
\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)
\(\Rightarrow ab\le1\)
\(\Rightarrow2018-2018ab>2018-2018=0\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
vậy \(P\) luôn không âm
a) Xét \(\Delta ABC\)và \(\Delta MDC\)có:
\(\widehat{C}\) chung
\(\widehat{CAB}=\widehat{CMD}=90^0\)
suy ra: \(\Delta ABC~\Delta MDC\)(g.g)
b) Xét \(\Delta BMI\)và \(\Delta BAC\)có:
\(\widehat{B}\)chung
\(\widehat{BMI}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BMI~\Delta BAC\) (g.g)
\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow\)\(BI.BA=BC.BM\)
c) \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b) \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)
Xét \(\Delta BIC\)và \(\Delta BMA\)có:
\(\widehat{B}\)chung
\(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)
suy ra: \(\Delta BIC~\Delta BMA\) (g.g)
\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\) (1)
c/m: \(\Delta CAI~\Delta BKI\) (g.g) \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)
Xét \(\Delta IAK\)và \(\Delta ICB\)có:
\(\widehat{AIK}=\widehat{CIB}\) (dd)
\(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)
suy ra: \(\Delta IAK~\Delta ICB\)(g.g)
\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2)
Từ (1) và (2) suy ra: \(\widehat{IAK}=\widehat{BAM}\)
hay AB là phân giác của \(\widehat{MAK}\)
d) \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)
mà \(\widehat{MAB}=\widehat{ICB}\) (câu c)
\(\Rightarrow\)\(\widehat{ICB}=45^0\)
\(\Delta CKB\)vuông tại K có \(\widehat{KCB}=45^0\)
\(\Rightarrow\)\(\widehat{CBK}=45^0\)
\(\Delta MBD\) vuông tại M có \(\widehat{MBD}=45^0\)
\(\Rightarrow\)\(\widehat{MDB}=45^0\)
hay \(\Delta MBD\)vuông cân tại M
\(\Rightarrow\)\(MB=MD\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)
ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
ÁP dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)
suy ra: \(\frac{MB}{AB}=\frac{5}{7}\) \(\Rightarrow\)\(MB=\frac{40}{7}\)
mà \(MB=MD\) (cmt)
\(\Rightarrow\)\(MD=\frac{40}{7}\)
Vậy \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)
\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)
\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)
Vậy \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)
a) xét \(\Delta ABC\) và \(\Delta MDC\) có
\(\widehat{ACB}=\widehat{MCD}\) ( góc chung)
\(\widehat{CAB}=\widehat{CMD}=90^0\) ( giả thiết )
\(\Rightarrow\Delta ABC\infty\Delta MDC\) \(\left(g.g\right)\)
b) xét \(\Delta BIM\) và \(\Delta BCA\) có
\(\widehat{IBM}=\widehat{CBA}\) ( góc chung )
\(\widehat{BMI}=\widehat{BAC}=90^0\)
\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)
\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)
\(\Rightarrow BI.BA=BM.BC\)
P/S tạm thời 2 câu này trước đi đã
PT \(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)-\left(\frac{1}{1+ab}-\frac{1}{1+b^2}\right)< 0\)
\(\Leftrightarrow\frac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}-\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}< 0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}-\frac{b\left(b-a\right)}{\left(1+b^2\right)\left(1+ab\right)}< 0\)
\(\Leftrightarrow\frac{b-a}{1+ab}\left(\frac{a}{1+a^2}-\frac{b}{1+b^2}\right)< 0\)
\(\Leftrightarrow\frac{b-a}{1+ab}.\frac{a+ab^2-b-a^2b}{\left(1+a^2\right)\left(1+b^2\right)}< 0\)
\(\Leftrightarrow\frac{b-a}{ab+a}.\frac{\left(ab-1\right)\left(b-a\right)}{\left(1+a^2\right)\left(1+b^2\right)}< 0\\\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(ab+1\right)}< 0\)
vì \(\left(b-a\right)^2\ge0;\left(1+a^2\right),\left(1+b^2\right)>0\)
\(\Leftrightarrow\frac{ab-1}{ab+1}< 0\left(vớia\ne b\right)\)
vì \(ab-1< ab+1\)
\(\Leftrightarrow\hept{\begin{cases}ab-1< 0\\ab+1>0\end{cases}\Leftrightarrow-1< ab< 1}\)
Vậy nghiệm của PT là \(-1< ab< 1\) và \(a\ne b\)
Nhóm các hạng tử để được bình phương ( Dùng hằng đẳng thức số 1 và 2 )
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\text{[}x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\text{]}+y^2-6y+13\)
\(=\left(x+1-2y\right)^2+\left(y^2-2y\cdot3+9\right)+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)
Ta có :
\(\left(x+1-2y\right)^2\ge0\)với mọi \(x,y\in R\)
và \(\left(y-3\right)^2\ge0\) với mọi \(y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x,y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4>0\) với mọi \(x,y\in R\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=(x^2-4xy+4y^2)+2(x-2y)+1+(y^2-6y+9)+4\)
\(=(x-2y)^2+2(x-2y)+1+(y-3)^2+4\)
\(=(x-2y+1)^2+(y-3)^2+4>0\)
Vậy