1+2+3+4+....+2+3+4+5+....+3+4+5+6+.....=?
ai bt giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+, Chu vi miếng bìa ban đầu là:
$10\times 4=40\text{ }(cm)$
Chu vi phần bìa bị cắt đi là:
$4\times (2\times 4)=32\text{ }(cm)$
Chu vi phần bìa còn lại là:
$40-32=8\text{ } (cm)$
+, Diện tích miếng bìa ban đầu là:
$10\times10=100\text{ }(cm^2)$
Diện tích phần bìa bị cắt đi là:
$4\times(2\times2)=16\text{ }(cm^2)$
Diện tích phần bìa còn lại là:
$100-16=84 \text{ }(cm^2)$
$\frac{18}{117}\times\frac{12}{113}+\frac{12}{113}\times\frac{8}{117}+\frac{26}{117}+\frac{101}{113}$
$=\frac{12}{113}\times\left(\frac{18}{117}+\frac{8}{117}\right)+\frac{26}{117}+\frac{101}{113}$
$=\frac{12}{113}\times\frac{26}{117}+\frac{26}{117}+\frac{101}{113}$
$=\frac{26}{117}\times\left(\frac{12}{113}+1\right)+\frac{101}{113}$
$=\frac{26}{117}\times \frac{125}{113}+\frac{101}{113}$
$=\frac{250}{1017}+\frac{101}{113}=\frac{1159}{1017}$
\(\dfrac{18}{117}\times\dfrac{12}{113}+\dfrac{12}{113}\times\dfrac{8}{177}+\dfrac{26}{117}\times\dfrac{101}{113}\)
\(=\left(\dfrac{18}{177}+\dfrac{8}{177}\right)\times\dfrac{12}{113}+\dfrac{26}{117}\times\dfrac{101}{113}\)
\(=\dfrac{26}{177}\times\dfrac{12}{113}+\dfrac{26}{117}\times\dfrac{101}{113}\)
\(=\dfrac{26}{177}\times\left(\dfrac{12}{113}+\dfrac{101}{113}\right)\)
\(=\dfrac{26}{177}\times1\)
\(=\dfrac{26}{117}\)
a: Ta có: ΔABC đều
=>AB=AC=BC và \(\widehat{BAC}=\widehat{ABC}=\widehat{ACB}=60^0\)
Xét ΔABN và ΔBCP có
AB=BC
\(\widehat{ABN}=\widehat{BCP}\)
BN=CP
Do đó: ΔABN=ΔBCP
=>AN=BP
Xét ΔMAC và ΔPCB có
MA=PC
\(\widehat{MAC}=\widehat{PCB}\left(=60^0\right)\)
AC=CB
Do đó: ΔMAC=ΔPCB
=>MC=BP
=>AN=BP=MC
b: Ta có: AM+BM=AB
CP+PA=CA
BN+NC=BC
mà AM=CP=BN và AB=CA=BC
nên BM=PA=NC
Xét ΔMAP và ΔNBM có
AP=BM
\(\widehat{MAP}=\widehat{NBM}\)
AM=BN
Do đó: ΔMAP=ΔNBM
=>MP=NM
Xét ΔNCP và ΔPAM có
NC=PA
\(\widehat{NCP}=\widehat{PAM}\)
CP=AM
Do đó: ΔNCP=ΔPAM
=>NP=PM
=>MP=NM=NP
=>ΔMNP đều
Xét ΔMNP có
A,D lần lượt là trung điểm của MN,MP
=>AD là đường trung bình của ΔMNP
=>AD//NP và \(AD=\dfrac{NP}{2}\)
Xét ΔHNP có
B,C lần lượt là trung điểm của HN,HP
=>BC là đường trung bình của ΔHNP
=>BC//NP và \(BC=\dfrac{NP}{2}\)
Ta có: AD//NP
BC//NP
Do đó: AD//BC
Ta có: \(AD=\dfrac{NP}{2}\)
\(BC=\dfrac{NP}{2}\)
Do đó: AD=BC
Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
4. Gọi số chi tiết máy trong tháng thứ nhất mà tổ 1, tổ 2 sản xuất được lần lượt là \(x,y\) (chi tiết máy; \(x,y\in\mathbb{N}^*\))
Vì trong tháng thứ nhất, cả hai tổ sản xuất được 800 chi tiết máy nên ta có phương trình: \(x+y=800\) (1)
Số chi tiết máy tổ 1 sản xuất được trong tháng thứ hai là: \(x\left(100\%+15\%\right)=1,15x\) (chi tiết máy)
Số chi tiết máy tổ 2 sản xuất được trong tháng thứ hai là: \(y\left(100\%+20\%\right)=1,2y\) (chi tiết máy)
Vì trong tháng thứ hai, cả hai tổ đã sản xuất được 945 chi tiết máy nên ta có phương trình: \(1,15x+1,2y=945\) (2)
Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}x+y=800\\1,15x+1,2y=945\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=300\left(tm\right)\\y=500\left(tm\right)\end{matrix}\right.\)
Vậy trong tháng thứ nhất tổ 1 sản xuất được 300 sản phẩm, tổ 2 sản xuất được 500 sản phẩm.
5. Gọi số chiếc áo tổ thứ nhất, tổ thứ hai may được trong một ngày lần lượt là \(x,y\) (chiếc áo; \(x,y\in\mathbb{N}^*\))
Vì mỗi ngày tổ thứ hai may được nhiều hơn tổ thứ nhất 20 chiếc áo nên ta có phương trình: \(y-x=20\) (1)
Số chiếc áo tổ thứ nhất may được trong 7 ngày là: \(7x\) (chiếc)
Số chiếc áo tổ thứ hai may được trong 5 ngày là: \(5y\) (chiếc)
Vì nếu tổ thứ nhất may trong 7 ngày và tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1540 chiếc áo nên ta có phương trình: \(7x+5y=1540\) (2)
Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}y-x=20\\7x+5y=1540\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=120\left(tm\right)\\y=140\left(tm\right)\end{matrix}\right.\)
Vậy trong một ngày tổ thứ nhất may được 120 chiếc áo; tổ thứ hai may được 140 chiếc áo.
bạn ơi có mấy số