K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CT
6 tháng 7 2022

Em nên gõ công thức trực quan để được hỗ trợ tốt hơn nhé

5 tháng 7 2022

Bạn chịu khó đánh chữ bằng Latex ra nhé.

5 tháng 7 2022

loading...  

5 tháng 7 2022

\(A=1997.1999=\left(1998-1\right)\left(1998+1\right)=1998^2-1< 1998^2=B\)

5 tháng 7 2022

I'll let you do the drawing. 

a) Consider the 2 triangles AHM and ABH, which both have a common angle at A, have \(\widehat{AMH}=\widehat{AHB}\left(=90^o\right)\). Therefore, \(\Delta AHM~\Delta ABH\left(a.a\right)\). This means \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\) or \(AH^2=AM.AB\)

Similarly, we have \(AH^2=AN.AC\). From these, we get \(AM.AB=AN.AC=AH^2\)

We can easily prove that AMHN is a rectangle (because  \(\widehat{MAN}=\widehat{AMH}=\widehat{ANH}=90^o\)). Thus, \(AH=MN\)(2 diagonals of a rectangle are equal) 

And finally, we get \(AM.AB=AN.AC=MN^2\), and that's what we must prove!

b) We can easily prove \(HN//AB\left(\perp AC\right)\), which means \(\widehat{FHN}=\widehat{B}\)

Consider the right triangle BHM (right at M), it has the median ME. Therefore, \(ME=\dfrac{BH}{2}\). We also have \(BE=\dfrac{BH}{2}\) so \(ME=BE\) or \(\Delta BEM\) is an isosceles triangle, or \(\widehat{BEM}=180^o-2.\widehat{B}\)

Similarly, we have \(\widehat{HFN}=180^o-2.\widehat{FHN}\)

We have already had \(\widehat{B}=\widehat{FHN}\). Thus, \(\widehat{BEM}=\widehat{HFN}\) or \(ME//NF\) (2 equal staggered angles)

Therefore, MEFN is a trapezoid.

In this trapezoid, I is the midmpoint of EF, O is the midpoint of MN (2 diagonal AH, MN of the rectangle AMHN meets at O). Thus, OI is the avergage line of the trapezoid MEFN (ME//NF) or \(OI//NF\)

It's easy to see \(\widehat{FNC}=\widehat{C}\)\(\widehat{MNH}=\widehat{MAH}\)

Also, \(\widehat{C}=\widehat{MAH}\left(=90^o-\widehat{B}\right)\). So, \(\widehat{FNC}=\widehat{MNH}\) or \(\widehat{FNC}+\widehat{FNH}=\widehat{MNH}+\widehat{FNH}\) or \(\widehat{CNH}=\widehat{MNF}\). Because \(\widehat{CNH}=90^o\), it's easy to see \(\widehat{MNF}=90^o\) or \(NF\perp MN\)

We have already prove that \(OI//NF\). Therefore, \(OI\perp MN\), and that's what we must prove!

c) I'm thinking about this question.

 

 

5 tháng 7 2022

sai, parabol úp

5 tháng 7 2022

cái này đáng ra là tìm giá trị lớn nhất chứ không phải nhỏ nhất

p = 2 + x - x2

P = -x2 + x + 2

P = - ( x2 - 2. \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)) + \(\dfrac{9}{4}\)

P = - (x - \(\dfrac{1}{2}\))2 + \(\dfrac{9}{4}\)

- ( x - 1/2 ) 2 ≤ 0 ⇔ p ≤  \(\dfrac{9}{4}\)⇔ P(max) = 9/4 dấu = xảy ra khi x = 1/2

5 tháng 7 2022

\(a^3-x-x^3+a=0\)

\(\Leftrightarrow a^3-x^3+\left(a-x\right)=0\)

\(\Leftrightarrow\left(a-x\right)\left(a^2+ax+x^2\right)+\left(a-x\right)=0\)

\(\Leftrightarrow\left(a-x\right)\left(a^2+ax+x^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\a^2+ax+x^2+1=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow a^2+ax+x^2+1=0\)

Ta có:\(a^2+ax+x^2+1=a^2+2.a.\dfrac{1}{2}x+\dfrac{1}{4}x^2+\dfrac{3}{4}y^2+1\)

                                     \(=\left(a+\dfrac{1}{2}x\right)^2+\dfrac{3}{4}y^2+1>0\)

\(\Rightarrow\left(2\right)\) vô lý

Vậy \(a=x\)

5 tháng 7 2022

\(B=x^{2020}-2018x^{2019}-2018x^{2018}-...-2018x+1\)

\(=x^{2020}-2019x^{2019}+x^{2019}-2019x^{2018}+x^{2018}-2019x^{2017}+...+x^2-2019x+x+1\)

\(=x^{2019}\left(x-2019\right)+x^{2018}\left(x-2019\right)+x^{2017}\left(x-2019\right)+...+x\left(x-2019\right)+x+1\)Thay \(x=2019\) vào B ta có:

\(B=2019^{2019}\left(2019-2019\right)+2019^{2018}\left(2019-2019\right)+2019^{2017}\left(2019-2019\right)+...+2019\left(2019-2019\right)+2019+1\)

\(=2019+1=2020\)

1
5 tháng 7 2022

.2,đk x >= 0 ; x khác 1 

 \(P=\left(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}\right)\left(\dfrac{1+x\sqrt{x}-\sqrt{x}-x}{\sqrt{x}+1}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x\sqrt{x}-1}\left(\dfrac{x\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\right)\)

\(=\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)}=\sqrt{x}-1\)

Ta có \(\sqrt{x}-1=3\Leftrightarrow x=16\left(tm\right)\)

5 tháng 7 2022

phương pháp 

giả sử tồn tại n để \(\dfrac{n+20}{n+90}\) là bình phương của một số hữu tỉ  thì sẽ tồn tại một phân số \(\dfrac{a}{b}\) thỏa mãn

\(\dfrac{n+20}{n+90}\) =  ( \(\dfrac{a}{b}\))2

⇔  b2 - a2 = 70 ⇔ (b-a)(b+a) = 70 = 10 . 7 = 14 x 5 = 35 x 2

với a,b là các số tự nhiên thì \(\left\{{}\begin{matrix}b-a=7\\a+b=10\end{matrix}\right.\) vô nghiệm tương tự

các trường hợp còn lại cũng vô nghiệm vậy ko có giá trị nào của n thỏa mãn đề bài  

5 tháng 7 2022

đây là phương pháp phản chứng nhé bạn