K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(a,\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{13}\\ =\left(31-36\right)+\left(\dfrac{6}{13}-\dfrac{6}{13}\right)+5\dfrac{9}{41}\\ =-5+0+5\dfrac{9}{41}\\ =\left(-5+5\right)+\dfrac{9}{41}=\dfrac{9}{41}\)

\(b,\dfrac{5}{3}+\left(-\dfrac{2}{7}\right)-\left(-1,2\right)\\ =\dfrac{5}{3}-\dfrac{2}{7}+\dfrac{6}{5}\\ =\dfrac{5.35-2.15+6.21}{105}=\dfrac{271}{105}\\ c,0,25+\dfrac{3}{5}-\left(\dfrac{1}{8}-\dfrac{2}{5}+1\dfrac{1}{4}\right)=\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{1}{8}+\dfrac{2}{5}-1\dfrac{1}{4}\\ =\left(-1\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{3}{5}+\dfrac{2}{5}\right)-\dfrac{1}{8}=-1+1-\dfrac{1}{8}=-\dfrac{1}{8}\)

10 tháng 9 2023

a) (31 6/13 + 5 9/41) - 36 6/13

= 409/13 + 214/41 - 474/13

= (409/13 - 474/13) + 214/41

= -5 + 214/41

= 9/41

b) 5/3 + (-2/7) - (-1,2)

= 5/3 - 2/7 + 6/5

= 29/21 + 6/5

= 271/105

c) 0,25 + 3/5 - (1/8 - 2/5 + 1 1/4)

= 1/4 + 3/5 - 1/8 + 2/5 - 5/4

= (1/4 - 5/4) + (3/5 + 2/5) - 1/8

= -1 + 1 - 1/8

= -1/8

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:
Ta có:
$\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=\frac{-(x-y)}{xy}=\frac{-xy}{xy}=-1$

11 tháng 9 2023

Gọi 120 số 1 hoặc -1 đó lần lượt là a1; a2; a3; ...; a120. Theo đề ta có:

a1.a2.a3 = -1; a2.a3.a4 = -1; a3.a4.a5 = -1; ...;

a118.a119.a120 = -1; a119.a120.a= -1; a120.a1.a= -1.

\(a_1=a_4=\dfrac{1}{a_2\cdot a_3}\)\(a_2=a_5=\dfrac{1}{a_3\cdot a_4}\)\(a_3=a_6=\dfrac{1}{a_4\cdot a_5}\); ...;

\(a_{118}=a_1=\dfrac{1}{a_{119}\cdot a_{120}}\)\(a_{119}=a_2=\dfrac{1}{a_{120}\cdot a_1}\)\(a_{120}=a_3=\dfrac{1}{a_1\cdot a_2}\).

Từ đây ta suy ra \(a_1=a_4=a_7=...=a_{118}\)\(a_2=a_5=a_8=...=a_{119}\)\(a_3=a_6=a_9=...=a_{120}\). (1)

Do đó \(a_1=\dfrac{1}{a_2\cdot a_3}\)\(a_2=\dfrac{1}{a_3\cdot a_1}\)\(a_3=\dfrac{1}{a_1\cdot a_2}\). Mà a1.a2.a3 = -1 và các số a1; a2; a3; ...; a120 chỉ có thể là 1 hoặc -1 nên chỉ có một nghiệm duy nhất \(a_1=a_2=a_3=-1\). (2)

Từ (1) và (2) suy ra có 120 số -1, nên tổng của 120 số đó là \(120\cdot\left(-1\right)=-120\).

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

9 tháng 9 2023

a) \(\dfrac{35}{101}=\dfrac{105}{303}< \dfrac{189}{303}\Rightarrow\dfrac{35}{101}< \dfrac{189}{303}\)

b) \(\dfrac{11}{13}< \dfrac{11+2}{13+2}=\dfrac{13}{15}< \dfrac{14}{15}\Rightarrow\dfrac{11}{-13}>\dfrac{-14}{15}\)

c) \(-\dfrac{32}{19}< 0< \dfrac{23}{32}\Rightarrow-\dfrac{32}{19}< \dfrac{23}{32}\)

d) \(1,561< 1,5661\Rightarrow-1,561>-1,5661\)

e) \(0,1=\dfrac{1}{10}=\dfrac{40}{400}< \dfrac{40+56}{400+56}=\dfrac{96}{456}< \dfrac{176}{456}\Rightarrow0,1< \dfrac{176}{456}\)

g) \(0,3=\dfrac{3}{10}=\dfrac{9}{30}< \dfrac{9+8}{30+8}=\dfrac{17}{38}< \dfrac{19}{38}\Rightarrow0,3< \dfrac{19}{38}\Rightarrow-0,3>\dfrac{-19}{38}\)

9 tháng 9 2023

a) Do tam giác AEB vuông cân tại A nên \(\left\{{}\begin{matrix}\widehat{EAB}=90^o\\AE=AB\end{matrix}\right.\)

Ta thấy \(\widehat{MEA}=\widehat{BAH}\) vì chúng cùng phụ với \(\widehat{EAM}\)

Xét 2 tam giác HAB vuông tại H và MEA vuông tại M, ta có:

\(AE=AB\left(cmt\right),\widehat{MEA}=\widehat{BAH}\left(cmt\right)\)

\(\Rightarrow\Delta HAB=\Delta MEA\left(ch-gn\right)\) \(\Rightarrow AH=ME\)     (1)

Tương tự, ta cũng có \(\Delta HAC=\Delta NFA\Rightarrow HC=AN\)     (2)

Từ (1) và (2) suy ra \(EM+HC=AH+AN\) hay \(EM+HC=HN\) (đpcm)

b) Từ \(\Delta HAC=\Delta NFA\Rightarrow AH=NF\)

Từ đó suy ra \(ME=NF\left(=AH\right)\)

Xét tam giác MNE và NMF, ta có:

\(ME=NF\left(cmt\right),\widehat{EMN}=\widehat{FNM}\left(=90^o\right)\), MN là cạnh chung.

\(\Rightarrow\Delta MNE=\Delta NMF\left(c.g.c\right)\)

\(\Rightarrow\widehat{ENM}=\widehat{FMN}\) \(\Rightarrow\) EN//FM (2 góc so le trong bằng nhau)

Ta có đpcm.

9 tháng 9 2023

mình đang cần gâps

 

9 tháng 9 2023

6255 và 1257

a, 6255 = (54)5 = 520

1257 = (53)7 = 521

Vì 520 < 521 nên 6255 < 1257

b,  32n = (32)n = 9n

     23n = (23)n = 8n

     9n > 8n ( nếu n > 0)

      9n = 8n (nếu n = 0)

Vậy nếu n = 0 thì 23n = 32n
      nếu n > 0 thì 32n > 23n

9 tháng 9 2023

Cảm ơn em đã báo cáo bài học. Cô đã duyệt toàn bộ nội dung bài giảng nhé. Bài giảng chuẩn và không có lỗi.

loading...

9 tháng 9 2023

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

8 tháng 9 2023

Gọi `3` lớp `7A,7B,7C` trồng cây lần lượt là `a,b,c` \(\left(a,b,c\in N\right)\) 

Theo bài ra ta có : \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)  và `a+b+c=60` 

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{60}{12}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=5\Rightarrow a=5\cdot3=15\\\dfrac{b}{4}=5\Rightarrow b=5\cdot4=20\\\dfrac{c}{5}=5\Rightarrow c=5\cdot5=25\end{matrix}\right.\)

Vậy ...

 

8 tháng 9 2023

Gọi \(x;y;z\left(x;y;z>0\right)\) lần lượt là số cây lớp 7A; 7B; 7C trồng

Theo đề bài ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{60}{12}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=4.5=20\\z=5.5=25\end{matrix}\right.\)

Vậy lớp 7A trồng được : 15 cây

             7B trồng được : 20 cây

             7C trồng được : 25 cây